Connect with us

TOP SCEINCE

How hummingbirds hum: New measurement technique unravels what gives hummingbird wings their characteristic sound

Published

on

How hummingbirds hum: New measurement technique unravels what gives hummingbird wings their characteristic sound

The hummingbird is named after its pleasant humming sound when it hovers in front of flowers to feed. But only now has it become clear how the wing generates the hummingbird’s namesake sound when it is beating rapidly at 40 beats per second. Researchers from Eindhoven University of Technology, Sorama, a TU/e spin-off company, and Stanford University meticulously observed hummingbirds using 12 high-speed cameras, 6 pressure plates and 2176 microphones. They discovered that the soft and complex feathered wings of hummingbirds generate sound in a fashion similar to how the simpler wings of insect do. The new insights could help make devices like fans and drones quieter.

The team of engineers succeeded in measuring the precise origin of the sound generated by the flapping wings of a flying animal for the first time. The hummingbird’s hum originates from the pressure difference between the topside and underside of the wings, which changes both in magnitude and orientation as the wings flap back and forth. These pressure differences over the wing are essential, because they furnish the net aerodynamic force that enables the hummingbird bird to liftoff and hover.Unlike other species of birds, a hummingbird wing generates a strong upward aerodynamic force during both the downward and upward wing stroke, so twice per wingbeat. Whereas both pressure differences due to the lift and drag force acting on the wing contribute, it turns out that the upward lifting pressure difference is the primary source of the hum.

The difference between whining, humming, buzzing and wooshing

Professor David Lentink of Stanford University: “This is the reason why birds and insects make different sounds. Mosquitoes whine, bees buzz, hummingbirds hum, and larger birds ‘woosh’. Most birds are relatively quiet because they generate most of the lift only once during the wingbeat at the downstroke. Hummingbirds and insects are noisier because they do so twice per wingbeat.”

The researchers combined all measurements in a 3D acoustic model of bird and insect wings. The model not only provides biological insight into how animals generate sound with their flapping wings, it also predicts how the aerodynamic performance of a flapping wing gives the wing sound its volume and timbre. “The distinctive sound of the hummingbird is perceived as pleasant because of the many ‘overtones’ created by the varying aerodynamic forces on the wing. A hummingbird wing is similar to a beautifully tuned instrument,” Lentink explains with a smile.

High-tech sound camera

To arrive at their model, the scientists examined six Anna’s hummingbirds, the most common species around Stanford. One by one, they had the birds drink sugar water from a fake flower in a special flight chamber. Around the chamber, not visible to the bird, cameras, microphones and pressure sensors were set up to precisely record each wingbeat while hovering in front of the flower.You can’t just go out and buy the equipment needed for this from an electronics store. CEO and researcher Rick Scholte of Sorama, a spin-off of TU Eindhoven: “To make the sound visible and be able to examine it in detail, we used sophisticated sound cameras developed by my company. The optical cameras are connected to a network of 2176 microphones for this purpose. Together they work a bit like a thermal camera that allows you to show a thermal image. We make the sound visible in a ‘heat map’, which enables us to see the 3D sound field in detail.”

New aerodynamic force sensors

To interpret the 3D sound images, it is essential to know what motion the bird’s wing is making at each sound measurement point. For that, Stanford’s twelve high-speed cameras came into play, capturing the exact wing movement frame-by-frame.Lentink: “But that’s not end of story. We also needed to measure the aerodynamic forces the hummingbird’s wings generates in flight. We had to develop a new instrument for that.” During a follow-up experiment six highly sensitive pressure plates finally managed to record the lift and drag forces generated by the wings as they moved up and down, a first.

The terabytes of data then had to be synchronized. The researchers wanted to know exactly which wing position produced which sound and how this related to the pressure differences. Scholte: “Because light travels so much faster than sound, we had to calibrate each frame separately for both the cameras and the microphones, so that the sound recordings and the images would always correspond exactly.” Because the cameras, microphones and sensors were all in different locations in the room, the researchers also had to correct for that.

Algorithm as a composite artist

Once the wing location, the corresponding sound and the pressure differences are precisely aligned for each video frame, the researchers were confronted with the complexity of interpretating high volume data. The researchers tackled this challenge harnessing artificial intelligence, the research of TU/e PhD student, and co-first author, Patrick Wijnings.

Wijnings: “We developed an algorithm for this that can interpret a 3D acoustic field from the measurements, and this enabled us to determine the most probable sound field of the hummingbird. The solution to this so-called inverse problem resembles what a police facial composite artist does: using a few clues to make the most reliable drawing of the suspect. In this way, you avoid the possibility that a small distortion in the measurements changes the outcome.”

The researchers finally managed to condense all these results in a simple 3D acoustic model, borrowed from the world of airplanes and mathematically adapted to flapping wings. It predicts the sound that flapping wings radiate, not only the hum of the hummingbird, but also the woosh of other birds and bats, the buzzing and whining of insects and even the noise that robots with flapping wings generate.

Making drones quieter

Although it was not the focus of this study, the knowledge gained may also help improve aircraft and drone rotors as well as laptop and vacuum cleaner fans. The new insights and tools can help make engineered devices that generate complex forces like animals do quieter.

This is exactly what Sorama aims to do: “We make sound visible in order to make appliances quieter. Noise pollution is becoming an ever-greater problem. And a decibel meter alone is not going to solve that. You need to know where the sound comes from and how it is produced, in order to be able to eliminate it. That’s what our sound cameras are for. This hummingbird wing research gives us a completely new and very accurate model as a starting point, so we can do our work even better,” concludes Scholte.

This research appears on March 16 in the journal eLife, under the title “How Oscillating Aerodynamic Forces Explain the Timbre of the Hummingbird’s Hum and Other Animals in Flapping Flight.” The experimental and analytical work of this research was conducted by PhD student Patrick Wijnings of TU Eindhoven under the supervision of Rick Scholte of Sorama and Sander Stuijk and Henk Corporaal of TU/e, and PhD student Ben Hightower of Stanford under the supervision of David Lentink of Stanford University with the assistance of four co-authors from the Lentink Lab: Rivers Ingersoll, Diana Chin, Jade Nguyen and Daniel Shorr. This research was financed by NWO Perspectief program ZERO and CAREER AWARD National Science Foundation (NSF).

Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

Human activities have an intense impact on Earth’s deep subsurface fluid flow

Published

on

By

How hummingbirds hum: New measurement technique unravels what gives hummingbird wings their characteristic sound


The impact of human activities — such as greenhouse gas emissions and deforestation — on Earth’s surface have been well-studied. Now, hydrology researchers from the University of Arizona have investigated how humans impact Earth’s deep subsurface, a zone that lies hundreds of meters to several kilometers beneath the planet’s surface.

“We looked at how the rates of fluid production with oil and gas compare to natural background circulation of water and showed how humans have made a big impact on the circulation of fluids in the subsurface,” said Jennifer McIntosh, a professor in the UArizona Department of Hydrology and Atmospheric Sciences and senior author of a paper in the journal Earth’s Future detailing the findings.

“The deep subsurface is out of sight and out of mind for most people, and we thought it was important to provide some context to these proposed activities, especially when it comes to our environmental impacts,” said lead study author Grant Ferguson, an adjunct professor in the UArizona Department of Hydrology and Atmospheric Sciences and a professor in the University of Saskatchewan’s School of Environment and Sustainability.

In the future, these human-induced fluid fluxes are projected to increase with strategies that are proposed as solutions for climate change, according the study. Such strategies include: geologic carbon sequestration, which is capturing and storing atmospheric carbon dioxide in underground porous rocks; geothermal energy production, which involves circulating water through hot rocks for generating electricity; and lithium extraction from underground mineral-rich brine for powering electric vehicles. The study was done in collaboration with researchers from the University of Saskatchewan in Canada, Harvard University, Northwestern University, the Korea Institute of Geosciences and Mineral Resources, and Linnaeus University in Sweden.

“Responsible management of the subsurface is central to any hope for a green transition, sustainable future and keeping warming below a few degrees,” said Peter Reiners, a professor in the UArizona Department of Geosciences and a co-author of the study.

With oil and natural gas production, there is always some amount of water, typically saline, that comes from the deep subsurface, McIntosh said. The underground water is often millions of years old and acquires its salinity either from evaporation of ancient seawater or from reaction with rocks and minerals. For more efficient oil recovery, more water from near-surface sources is added to the salt water to make up for the amount of oil removed and to maintain reservoir pressures. The blended saline water then gets reinjected into the subsurface. This becomes a cycle of producing fluid and reinjecting it to the deep subsurface.

The same process happens in lithium extraction, geothermal energy production and geologic carbon sequestration, the operations of which involve leftover saline water from the underground that is reinjected.

“We show that the fluid injection rates or recharge rates from those oil and gas activities is greater than what naturally occurs,” McIntosh said.

Using existing data from various sources, including measurements of fluid movements related to oil and gas extraction and water injections for geothermal energy, the team found that the current fluid movement rates induced by human activities are higher compared to how fluids moved before human intervention.

As human activities like carbon capture and sequestration and lithium extraction ramp up, the researchers also predicted how these activities might be recorded in the geological record, which is the history of Earth as recorded in the rocks that make up its crust.

Human activities have the potential to alter not just the deep subsurface fluids but also the microbes that live down there, McIntosh said. As fluids move around, microbial environments may be altered by changes in water chemistry or by bringing new microbial communities from Earth’s surface to the underground.

For example, with hydraulic fracturing, a technique that is used to break underground rocks with pressurized liquids for extracting oil and gas, a deep rock formation that previously didn’t have any detectable number of microbes might have a sudden bloom of microbial activity.

There remain a lot of unknowns about Earth’s deep subsurface and how it is impacted by human activities, and it’s important to continue working on those questions, McIntosh said.

“We need to use the deep subsurface as part of the solution for the climate crisis,” McIntosh said. “Yet, we know more about the surface of Mars than we do about water, rocks and life deep beneath our feet.”



Source link

Continue Reading

TOP SCEINCE

Holographic displays offer a glimpse into an immersive future

Published

on

By

How hummingbirds hum: New measurement technique unravels what gives hummingbird wings their characteristic sound


Setting the stage for a new era of immersive displays, researchers are one step closer to mixing the real and virtual worlds in an ordinary pair of eyeglasses using high-definition 3D holographic images, according to a study led by Princeton University researchers.

Holographic images have real depth because they are three dimensional, whereas monitors merely simulate depth on a 2D screen. Because we see in three dimensions, holographic images could be integrated seamlessly into our normal view of the everyday world.

The result is a virtual and augmented reality display that has the potential to be truly immersive, the kind where you can move your head normally and never lose the holographic images from view. “To get a similar experience using a monitor, you would need to sit right in front of a cinema screen,” said Felix Heide, assistant professor of computer science and senior author on a paper published April 22 in Nature Communications.

And you wouldn’t need to wear a screen in front of your eyes to get this immersive experience. Optical elements required to create these images are tiny and could potentially fit on a regular pair of glasses. Virtual reality displays that use a monitor, as current displays do, require a full headset. And they tend to be bulky because they need to accommodate a screen and the hardware necessary to operate it.

“Holography could make virtual and augmented reality displays easily usable, wearable and ultrathin,” said Heide. They could transform how we interact with our environments, everything from getting directions while driving, to monitoring a patient during surgery, to accessing plumbing instructions while doing a home repair.

One of the most important challenges is quality. Holographic images are created by a small chip-like device called a spatial light modulator. Until now, these modulators could only create images that are either small and clear or large and fuzzy. This tradeoff between image size and clarity results in a narrow field of view, too narrow to give the user an immersive experience. “If you look towards the corners of the display, the whole image may disappear,” said Nathan Matsuda, research scientist at Meta and co-author on the paper.

Heide, Matsuda and Ethan Tseng, doctoral student in computer science, have created a device to improve image quality and potentially solve this problem. Along with their collaborators, they built a second optical element to work in tandem with the spatial light modulator. Their device filters the light from the spatial light modulator to expand the field of view while preserving the stability and fidelity of the image. It creates a larger image with only a minimal drop in quality.

Image quality has been a core challenge preventing the practical applications of holographic displays, said Matsuda. “The research brings us one step closer to resolving this challenge,” he said.

The new optical element is like a very small custom-built piece of frosted glass, said Heide. The pattern etched into the frosted glass is the key. Designed using AI and optical techniques, the etched surface scatters light created by the spatial light modulator in a very precise way, pushing some elements of an image into frequency bands that are not easily perceived by the human eye. This improves the quality of the holographic image and expands the field of view.

Still, hurdles to making a working holographic display remain. The image quality isn’t yet perfect, said Heide, and the fabrication process for the optical elements needs to be improved. “A lot of technology has to come together to make this feasible,” said Heide. “But this research shows a path forward.”



Source link

Continue Reading

TOP SCEINCE

This salt battery harvests osmotic energy where the river meets the sea

Published

on

By

How hummingbirds hum: New measurement technique unravels what gives hummingbird wings their characteristic sound


Estuaries — where freshwater rivers meet the salty sea — are great locations for birdwatching and kayaking. In these areas, waters containing different salt concentrations mix and may be sources of sustainable, “blue” osmotic energy. Researchers in ACS Energy Letters report creating a semipermeable membrane that harvests osmotic energy from salt gradients and converts it to electricity. The new design had an output power density more than two times higher than commercial membranes in lab demonstrations.

Osmotic energy can be generated anywhere salt gradients are found, but the available technologies to capture this renewable energy have room for improvement. One method uses an array of reverse electrodialysis (RED) membranes that act as a sort of “salt battery,” generating electricity from pressure differences caused by the salt gradient. To even out that gradient, positively charged ions from seawater, such as sodium, flow through the system to the freshwater, increasing the pressure on the membrane. To further increase its harvesting power, the membrane also needs to keep a low internal electrical resistance by allowing electrons to easily flow in the opposite direction of the ions. Previous research suggests that improving both the flow of ions across the RED membrane and the efficiency of electron transport would likely increase the amount of electricity captured from osmotic energy. So, Dongdong Ye, Xingzhen Qin and colleagues designed a semipermeable membrane from environmentally friendly materials that would theoretically minimize internal resistance and maximize output power.

The researchers’ RED membrane prototype contained separate (i.e., decoupled) channels for ion transport and electron transport. They created this by sandwiching a negatively charged cellulose hydrogel (for ion transport) between layers of an organic, electrically conductive polymer called polyaniline (for electron transport). Initial tests confirmed their theory that decoupled transport channels resulted in higher ion conductivity and lower resistivity compared to homogenous membranes made from the same materials. In a water tank that simulated an estuary environment, their prototype achieved an output power density 2.34 times higher than a commercial RED membrane and maintained performance during 16 days of non-stop operation, demonstrating its long-term, stable performance underwater. In a final test, the team created a salt battery array from 20 of their RED membranes and generated enough electricity to individually power a calculator, LED light and stopwatch.

Ye, Qin and their team members say their findings expand the range of ecological materials that could be used to make RED membranes and improve osmotic energy-harvesting performance, making these systems more feasible for real-world use.

The authors acknowledge funding from the National Natural Science Foundation of China.



Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.