Connect with us

TOP SCEINCE

NASA’s Mars Perseverance rover provides front-row seat to landing, first audio recording of Red Planet

Published

on

NASA’s Mars Perseverance rover provides front-row seat to landing, first audio recording of Red Planet

New video from NASA’s Mars 2020 Perseverance rover chronicles major milestones during the final minutes of its entry, descent, and landing (EDL) on the Red Planet on Feb. 18 as the spacecraft plummeted, parachuted, and rocketed toward the surface of Mars. A microphone on the rover also has provided the first audio recording of sounds from Mars.

From the moment of parachute inflation, the camera system covers the entirety of the descent process, showing some of the rover’s intense ride to Mars’ Jezero Crater. The footage from high-definition cameras aboard the spacecraft starts 7 miles (11 kilometers) above the surface, showing the supersonic deployment of the most massive parachute ever sent to another world, and ends with the rover’s touchdown in the crater.

A microphone attached to the rover did not collect usable data during the descent, but the commercial off-the-shelf device survived the highly dynamic descent to the surface and obtained sounds from Jezero Crater on Feb. 20. About 10 seconds into the 60-second recording, a Martian breeze is audible for a few seconds, as are mechanical sounds of the rover operating on the surface.

“”For those who wonder how you land on Mars — or why it is so difficult — or how cool it would be to do so — you need look no further,” said acting NASA Administrator Steve Jurczyk. “”Perseverance is just getting started, and already has provided some of the most iconic visuals in space exploration history. It reinforces the remarkable level of engineering and precision that is required to build and fly a vehicle to the Red Planet.”

Also released Monday was the mission’s first panorama of the rover’s landing location, taken by the two Navigation Cameras located on its mast. The six-wheeled robotic astrobiologist, the fifth rover the agency has landed on Mars, currently is undergoing an extensive checkout of all its systems and instruments.

“This video of Perseverance’s descent is the closest you can get to landing on Mars without putting on a pressure suit,” said Thomas Zurbuchen, NASA associate administrator for science. “It should become mandatory viewing for young women and men who not only want to explore other worlds and build the spacecraft that will take them there, but also want to be part of the diverse teams achieving all the audacious goals in our future.”

The world’s most intimate view of a Mars landing begins about 230 seconds after the spacecraft entered the Red Planet’s upper atmosphere at 12,500 mph (20,100 kph). The video opens in black, with the camera lens still covered within the parachute compartment. Within less than a second, the spacecraft’s parachute deploys and transforms from a compressed 18-by-26 inch (46-by-66 centimeter) cylinder of nylon, Technora, and Kevlar into a fully inflated 70.5-foot-wide (21.5-meter-wide) canopy — the largest ever sent to Mars. The tens of thousands of pounds of force that the parachute generates in such a short period stresses both the parachute and the vehicle.


“Now we finally have a front-row view to what we call ‘the seven minutes of terror’ while landing on Mars,” said Michael Watkins, director of NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. “From the explosive opening of the parachute to the landing rockets’ plume sending dust and debris flying at touchdown, it’s absolutely awe-inspiring.”

The video also captures the heat shield dropping away after protecting Perseverance from scorching temperatures during its entry into the Martian atmosphere. The downward view from the rover sways gently like a pendulum as the descent stage, with Perseverance attached, hangs from the back shell and parachute. The Martian landscape quickly pitches as the descent stage — the rover’s free-flying “jetpack,” which decelerates using rocket engines and then lowers the rover on cables to the surface — breaks free, its eight thrusters engaging to put distance between it and the now-discarded back shell and the parachute.

Then, 80 seconds and 7,000 feet (2,130 meters) later, the cameras capture the descent stage performing the sky crane maneuver over the landing site — the plume of its rocket engines kicking up dust and small rocks that have likely been in place for billions of years.

“”We put the EDL camera system onto the spacecraft not only for the opportunity to gain a better understanding of our spacecraft’s performance during entry, descent, and landing, but also because we wanted to take the public along for the ride of a lifetime — landing on the surface of Mars,” said Dave Gruel, lead engineer for Mars 2020 Perseverance’s EDL camera and microphone subsystem at JPL. “We know the public is fascinated with Mars exploration, so we added the EDL Cam microphone to the vehicle because we hoped it could enhance the experience, especially for visually-impaired space fans, and engage and inspire people around the world.”

The footage ends with Perseverance’s aluminum wheels making contact with the surface at 1.61 mph (2.6 kph), and then pyrotechnically fired blades sever the cables connecting it to the still-hovering descent stage. The descent stage then climbs and accelerates away in the preplanned flyaway maneuver.


“If this were an old Western movie, I’d say the descent stage was our hero riding slowly into the setting Sun, but the heroes are actually back here on Earth,” said Matt Wallace, Mars 2020 Perseverance deputy project manager at JPL. “I’ve been waiting 25 years for the opportunity to see a spacecraft land on Mars. It was worth the wait. Being able to share this with the world is a great moment for our team.”

Five commercial off-the-shelf cameras located on three different spacecraft components collected the imagery. Two cameras on the back shell, which encapsulated the rover on its journey, took pictures of the parachute inflating. A camera on the descent stage provided a downward view — including the top of the rover — while two on the rover chassis offered both upward and downward perspectives.

The rover team continues its initial inspection of Perseverance’s systems and its immediate surroundings. Monday, the team will check out five of the rover’s seven instruments and take the first weather observations with the Mars Environmental Dynamics Analyzer instrument. In the coming days, a 360-degree panorama of Jezero by the Mastcam-Z should be transmitted down, providing the highest resolution look at the road ahead.

More About the Mission

A key objective of Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith.

Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.

Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

Warming of Antarctic deep-sea waters contribute to sea level rise in North Atlantic, study finds

Published

on

By

NASA’s Mars Perseverance rover provides front-row seat to landing, first audio recording of Red Planet


Analysis of mooring observations and hydrographic data suggest the Atlantic Meridional Overturning Circulation deep water limb in the North Atlantic has weakened. Two decades of continual observations provide a greater understanding of the Earth’s climate regulating system.

A new study published in the journal Nature Geoscience led by scientists at University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, and the National Oceanic and Atmospheric Administration’s Atlantic Oceanographic and Meteorological Laboratory, found that human-induced environmental changes around Antarctica are contributing to sea level rise in the North Atlantic.

The research team analyzed two decades of deep sea oceanographic data collected by observational mooring programs to show that a critical piece of Earth’s global system of ocean currents in the North Atlantic has weakened by about 12 percent over the past two decades.

“Although these regions are tens of thousands of miles away from each other and abyssal areas are a few miles below the ocean surface, our results reinforce the notion that even the most remote areas of the world’s oceans are not untouched by human activity,” said the study’s lead author Tiago Biló, an assistant scientist at the Rosenstiel School’s NOAA Cooperative Institute for Marine and Atmospheric Studies.

As part of the NOAA-funded project DeepT (Innovative analysis of deep and abyssal temperatures from bottom-moored instrument), the scientists analyzed data from several observational programs to study changes over time in a cold, dense, and deep water mass located at depths greater than 4,000 meters (2.5 miles) below the ocean surface that flow from the Southern Ocean northward and eventually upwells to shallower depths in other parts of the global ocean such as the North Atlantic.

This shrinking deep-ocean branch — that scientists call the abyssal limb — is part of the Atlantic Meridional Overturning Circulation (AMOC), a three-dimensional system of ocean currents that act as a “conveyer belt” to distribute heat, nutrients, and carbon dioxide across the world’s oceans.

This near-bottom branch is comprised of Antarctic bottom water, which forms from the cooling of seawater in the Southern Ocean around Antarctica during winter months. Among the different formation mechanisms of this bottom water, perhaps the most important is the so-called brine rejection, a process that occurs when salty water freezes. As sea ice forms, it releases salt into the surrounding water, increasing its density. This dense water sinks to the ocean floor, creating a cold, dense water layer that spreads northward to fill all three ocean basins — the Indian, Pacific, and Atlantic oceans. During the 21st century, the researchers observed that the flow of this Antarctic layer across 16°N latitude in the Atlantic had slowed down, reducing the inflow of cold waters to higher latitudes, and leading to warming of waters in the deep ocean.

“The areas affected by this warming spans thousands of miles in the north-south and east-west directions between 4,000- and 6,000-meters of depth,” said William Johns, a co-author and professor of ocean sciences at the Rosenstiel School. “As a result, there is a significant increase in the abyssal ocean heat content, contributing to local sea level rise due to the thermal expansion of the water.”

“Our observational analysis matches what the numerical models have predicted — human activity could potentially impose circulation changes on the entire ocean,” said Biló. “This analysis was only possible because of the decades of collective planning and efforts by multiple oceanographic institutions worldwide.”



Source link

Continue Reading

TOP SCEINCE

Octopus inspires new suction mechanism for robots

Published

on

By

NASA’s Mars Perseverance rover provides front-row seat to landing, first audio recording of Red Planet


A new robotic suction cup which can grasp rough, curved and heavy stone, has been developed by scientists at the University of Bristol.

The team, based at Bristol Robotics Laboratory, studied the structures of octopus biological suckers, which have superb adaptive suction abilities enabling them to anchor to rock.

In their findings, published in the journal PNAS today, the researchers show how they were able create a multi-layer soft structure and an artificial fluidic system to mimic the musculature and mucus structures of biological suckers.

Suction is a highly evolved biological adhesion strategy for soft-body organisms to achieve strong grasping on various objects. Biological suckers can adaptively attach to dry complex surfaces such as rocks and shells, which are extremely challenging for current artificial suction cups. Although the adaptive suction of biological suckers is believed to be the result of their soft body’s mechanical deformation, some studies imply that in-sucker mucus secretion may be another critical factor in helping attach to complex surfaces, thanks to its high viscosity.

Lead author Tianqi Yue explained: “The most important development is that we successfully demonstrated the effectiveness of the combination of mechanical conformation — the use of soft materials to conform to surface shape, and liquid seal — the spread of water onto the contacting surface for improving the suction adaptability on complex surfaces. This may also be the secret behind biological organisms ability to achieve adaptive suction.”

Their multi-scale suction mechanism is an organic combination of mechanical conformation and regulated water seal. Multi-layer soft materials first generate a rough mechanical conformation to the substrate, reducing leaking apertures to just micrometres. The remaining micron-sized apertures are then sealed by regulated water secretion from an artificial fluidic system based on the physical model, thereby the suction cup achieves long suction longevity on diverse surfaces but with minimal overflow.

Tianqi added: “We believe the presented multi-scale adaptive suction mechanism is a powerful new adaptive suction strategy which may be instrumental in the development of versatile soft adhesion.

“Current industrial solutions use always-on air pumps to actively generate the suction however, these are noisy and waste energy.

“With no need for a pump, it is well known that many natural organisms with suckers, including octopuses, some fishes such as suckerfish and remoras, leeches, gastropods and echinoderms, can maintain their superb adaptive suction on complex surfaces by exploiting their soft body structures.”

The findings have great potential for industrial applications, such as providing a next-generation robotic gripper for grasping a variety of irregular objects.

The team now plan to build a more intelligent suction cup, by embedding sensors into the suction cup to regulate suction cup’s behaviour.



Source link

Continue Reading

TOP SCEINCE

One third of China’s urban population at risk of city sinking, new satellite data shows

Published

on

By

NASA’s Mars Perseverance rover provides front-row seat to landing, first audio recording of Red Planet


Land subsidence is overlooked as a hazard in cities, according to scientists from the University of East Anglia (UEA) and Virginia Tech.

Writing in the journal Science, Prof Robert Nicholls of the Tyndall Centre for Climate Change Research at UEA and Prof Manoochehr Shirzaei of Virginia Tech and United Nations University for Water, Environment and Health, Ontario, highlight the importance of a new research paper analysing satellite data that accurately and consistently maps land movement across China.

While they say in their comment article that consistently measuring subsidence is a great achievement, they argue it is only the start of finding solutions. Predicting future subsidence requires models that consider all drivers, including human activities and climate change, and how they might change with time.

The research paper, published in the same issue, considers 82 cities with a collective population of nearly 700 million people. The results show that 45% of the urban areas that were analysed are sinking, with 16% falling at a rate of 10mm a year or more.

Nationally, roughly 270 million urban residents are estimated to be affected, with nearly 70 million experiencing rapid subsidence of 10mm a year or more. Hotspots include Beijing and Tianjin.

Coastal cities such as Tianjin are especially affected as sinking land reinforces climate change and sea-level rise. The sinking of sea defences is one reason why Hurricane Katrina’s flooding brought such devastation and death-toll to New Orleans in 2005.

Shanghai — China’s biggest city — has subsided up to 3m over the past century and continues to subside today. When subsidence is combined with sea-level rise, the urban area in China below sea level could triple in size by 2120, affecting 55 to 128 million residents. This could be catastrophic without a strong societal response.

“Subsidence jeopardises the structural integrity of buildings and critical infrastructure and exacerbates the impacts of climate change in terms of flooding, particularly in coastal cities where it reinforces sea-level rise,” said Prof Nicholls, who was not involved in the study, but whose research focusses on sea-level rise, coastal erosion and flooding, and how communities can adapt to these changes.

The subsidence is mainly caused by human action in the cities. Groundwater withdrawal, that lowers the water table is considered the most important driver of subsidence, combined with geology and weight of buildings.

In Osaka and Tokyo, groundwater withdrawal was stopped in the 1970s and city subsidence has ceased or greatly reduced showing this is an effective mitigation strategy. Traffic vibration and tunnelling is potentially also a local contributing factor — Beijing has sinking of 45mm a year near subways and highways. Natural upward or downward land movement also occurs but is generally much smaller than human induced changes.

While human-induced subsidence was known in China before this study, Profs Nicholls and Shirzaei say these new results reinforce the need for a national response. This problem happens in susceptible cities outside China and is a widespread problem across the world.

They call for the research community to move from measurement to understanding implications and supporting responses. The new satellite measurements are delivering new detailed subsidence data but the methods to use this information to work with city planners to address these problems needs much more development. Affected coastal cities in China and more widely need particular attention.

“Many cities and areas worldwide are developing strategies for managing the risks of climate change and sea-level rise,” said Prof Nicholls. “We need to learn from this experience to also address the threat of subsidence which is more common than currently recognised.”



Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.