Connect with us

TOP SCEINCE

Research shows we’re surprisingly similar to Earth’s first animals: Today’s humans share genes with ancient oceanic creatures missing heads

Published

on

Research shows we’re surprisingly similar to Earth’s first animals: Today’s humans share genes with ancient oceanic creatures missing heads

The earliest multicellular organisms may have lacked heads, legs, or arms, but pieces of them remain inside of us today, new research shows.

According to a UC Riverside study, 555-million-year-old oceanic creatures from the Ediacaran period share genes with today’s animals, including humans.”None of them had heads or skeletons. Many of them probably looked like three-dimensional bathmats on the sea floor, round discs that stuck up,” said Mary Droser, a geology professor at UCR. “These animals are so weird and so different, it’s difficult to assign them to modern categories of living organisms just by looking at them, and it’s not like we can extract their DNA — we can’t.”

However, well-preserved fossil records have allowed Droser and the study’s first author, recent UCR doctoral graduate Scott Evans, to link the animals’ appearance and likely behaviors to genetic analysis of currently living things. Their research on these links has been recently published in the journal Proceedings of the Royal Society B.

For their analysis, the researchers considered four animals representative of the more than 40 recognized species that have been identified from the Ediacaran era. These creatures ranged in size from a few millimeters to nearly a meter in length.

Kimberella were teardrop-shaped creatures with one broad, rounded end and one narrow end that likely scraped the sea floor for food with a proboscis. Further, they could move around using a “muscular foot” like snails today. The study included flat, oval-shaped Dickinsonia with a series of raised bands on their surface, and Tribrachidium, who spent their lives immobilized at the bottom of the sea.Also analyzed were Ikaria, animals recently discovered by a team including Evans and Droser. They were about the size and shape of a grain of rice, and represent the first bilaterians — organisms with a front, back, and openings at either end connected by a gut. Evans said it’s likely Ikaria had mouths, though those weren’t preserved in the fossil records, and they crawled through organic matter “eating as they went.”

All four of the animals were multicellular, with cells of different types. Most had symmetry on their left and right sides, as well as noncentralized nervous systems and musculature.

Additionally, they seem to have been able to repair damaged body parts through a process known as apoptosis. The same genes involved are key elements of human immune systems, which helps to eliminate virus-infected and pre-cancerous cells.

These animals likely had the genetic parts responsible for heads and the sensory organs usually found there. However, the complexity of interaction between these genes that would give rise to such features hadn’t yet been achieved.

“”The fact that we can say these genes were operating in something that’s been extinct for half a billion years is fascinating to me,” Evans said.

The work was supported by a NASA Exobiology grant, and a Peter Buck postdoctoral fellowship.

Going forward, the team is planning to investigate muscle development and functional studies to further understand early animal evolution.

“”Our work is a way to put these animals on the tree of life, in some respects,” Droser said. “And show they’re genetically linked to modern animals, and to us.”

Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

First evidence of human occupation in lava tube cave in Saudi Arabia

Published

on

By

Research shows we’re surprisingly similar to Earth’s first animals: Today’s humans share genes with ancient oceanic creatures missing heads


Recent strides in interdisciplinary archaeological research in Arabia have unveiled new insights into the evolution and historical development of regional human populations, as well as the dynamic patterns of cultural change, migration, and adaptation to environmental fluctuations.

Despite the challenges posed by limited preservation of archaeological assemblages and organic remains in arid environments, these discoveries are reshaping our understanding of the region’s rich cultural heritage.

One such breakthrough led by Griffith University’s Australian Research Centre for Human Evolution (ARCHE), in collaboration with international partners, comes from the exploration of underground settings, including caves and lava tubes, which have remained largely untapped reservoirs of archaeological abundance in Arabia.

Through meticulous excavation and analysis, researchers have uncovered a wealth of evidence at Umm Jirsan, spanning from the Neolithic to the Chalcolithic/Bronze Age periods (~10,000-3,500 years ago).

“Our findings at Umm Jirsan provide a rare glimpse into the lives of ancient peoples in Arabia, revealing repeated phases of human occupation and shedding light on the pastoralist activities that once thrived in this landscape,” said Dr Mathew Stewart, the lead researcher and a Research Fellow at ARCHE.

“This site likely served as a crucial waypoint along pastoral routes, linking key oases and facilitating cultural exchange and trade.”

Rock art and faunal records attest to the pastoralist use of the lava tube and surrounding areas, painting a vivid picture of ancient lifeways.

Depictions of cattle, sheep, goat and dogs corroborate the prehistoric livestock practices and herd composition of the region.

Isotopic analysis of animal remains indicates that livestock primarily grazed on wild grasses and shrubs, while humans maintained a diet rich in protein, with a notable increase in the consumption of C3 plants over time, suggesting the emergence of oasis agriculture.

“While underground localities are globally significant in archaeology and Quaternary science, our research represents the first comprehensive study of its kind in Saudi Arabia,” added Professor Michael Petraglia, Director of ARCHE.

“These findings underscore the immense potential for interdisciplinary investigations in caves and lava tubes, offering a unique window into Arabia’s ancient past.”

The research at Umm Jirsan underscores the importance of collaborative, multidisciplinary approaches to archaeological inquiry and highlights the significance of Arabia’s archaeological heritage on the global stage.

Researchers involved in this study work in close partnership with the Heritage Commission, Saudi Ministry of Culture, and the Saudi Geological Survey. Additional partners include King Saud University and key institutions in the UK, the USA, and Germany.



Source link

Continue Reading

TOP SCEINCE

Paleontologists unearth what may be the largest known marine reptile

Published

on

By

Research shows we’re surprisingly similar to Earth’s first animals: Today’s humans share genes with ancient oceanic creatures missing heads


The fossilised remains of a second gigantic jawbone measuring more than two metres long has been found on a beach in Somerset, UK.

Experts have identified the bones as belonging to the jaws of a new species of enormous ichthyosaur, a type of prehistoric marine reptile. Estimates suggest the oceanic titan would have been more than 25 metres long.

Father and daughter, Justin and Ruby Reynolds from Braunton, Devon, found the first pieces of the second jawbone to be found in May 2020, while searching for fossils on the beach at Blue Anchor, Somerset. Ruby, then aged 11, found the first chunk of giant bone before searching together for additional pieces.

Realising they had discovered something significant, they contacted leading ichthyosaur expert, Dr Dean Lomax, a palaeontologist at The University of Manchester. Dr Lomax, who is also a 1851 Research Fellow at the University of Bristol, contacted Paul de la Salle, a seasoned fossil collector who had found the first giant jawbone in May 2016 from further along the coast at Lilstock.

Dr Dean Lomax said: “I was amazed by the find. In 2018, my team (including Paul de la Salle) studied and described Paul’s giant jawbone and we had hoped that one day another would come to light. This new specimen is more complete, better preserved, and shows that we now have two of these giant bones — called a surangular — that have a unique shape and structure. I became very excited, to say the least.”

Justin and Ruby, together with Paul, Dr Lomax, and several family members, visited the site to hunt for more pieces of this rare discovery. Over time, the team found additional pieces of the same jaw which fit together perfectly, like a multimillion-year-old jigsaw.

Justin said: “When Ruby and I found the first two pieces we were very excited as we realised that this was something important and unusual. When I found the back part of the jaw, I was thrilled because that is one of the defining parts of Paul’s earlier discovery.”

The last piece of bone was recovered in October 2022.

The research team, led by Dr Lomax, revealed that the jaw bones belong to a new species of giant ichthyosaur that would have been about the size of a blue whale. Comparing the two examples of the same bone with the same unique features from the same geologic time zone supports their identifications.

The team have called the new genus and species Ichthyotitan severnensis, meaning “giant fish lizard of the Severn.”

The bones are around 202 million years old, dating to the end of the Triassic Period in a time known as the Rhaetian. During this time, the gigantic ichthyosaurs swam the seas while the dinosaurs walked on land. It was the titans’ final chapter, however — as the story told in the rocks above these fossils record a cataclysm known as the Late Triassic global mass extinction event. After this time, giant ichthyosaurs from the family known as Shastasauridae go extinct. Today, these bones represent the very last of their kind.

Ichthyotitan is not the world’s first giant ichthyosaur, but de la Salles’ and Reynolds’ discoveries are unique among those known to science. These two bones appear roughly 13 million years after their latest geologic relatives, including Shonisaurus sikanniensis from British Columbia, Canada, and Himalayasaurus tibetensis from Tibet, China.

Dr Lomax added: “I was highly impressed that Ruby and Justin correctly identified the discovery as another enormous jawbone from an ichthyosaur. They recognised that it matched the one we described in 2018. I asked them whether they would like to join my team to study and describe this fossil, including naming it. They jumped at the chance. For Ruby, especially, she is now a published scientist who not only found but also helped to name a type of gigantic prehistoric reptile. There are probably not many 15-year-olds who can say that! A Mary Anning in the making, perhaps.”

Ruby said: “It was so cool to discover part of this gigantic ichthyosaur. I am very proud to have played a part in a scientific discovery like this.”

Further examinations of the bones’ internal structures have been carried out by master’s student, Marcello Perillo, from the University of Bonn, Germany. His work confirmed the ichthyosaur origin of the bones and revealed that the animal was still growing at the time of death.

He said: “We could confirm the unique set of histological characters typical of giant ichthyosaur lower jaws: the anomalous periosteal growth of these bones hints at yet to be understood bone developmental strategies, now lost in the deep time, that likely allowed late Triassic ichthyosaurs to reach the known biological limits of vertebrates in terms of size. So much about these giants is still shrouded by mystery, but one fossil at a time we will be able to unravel their secret.”

Concluding the work, Paul de la Salle added: “To think that my discovery in 2016 would spark so much interest in these enormous creatures fills me with joy. When I found the first jawbone, I knew it was something special. To have a second that confirms our findings is incredible. I am overjoyed.”

The new research has been published today in the open access journal PLOS ONE.

Ruby, Justin and Paul’s discoveries will soon go on display at the Bristol Museum and Art Gallery.

Lomax said: “This research has been ongoing for almost eight years. It is quite remarkable to think that gigantic, blue whale-sized ichthyosaurs were swimming in the oceans around what was the UK during the Triassic Period. These jawbones provide tantalising evidence that perhaps one day a complete skull or skeleton of one of these giants might be found. You never know.”



Source link

Continue Reading

TOP SCEINCE

Understanding climate warming impacts on carbon release from the tundra

Published

on

By

Research shows we’re surprisingly similar to Earth’s first animals: Today’s humans share genes with ancient oceanic creatures missing heads


The warming climate shifts the dynamics of tundra environments and makes them release trapped carbon, according to a new study published in Nature. These changes could transform tundras from carbon sinks into a carbon source, exacerbating the effects of climate change.

A team of over 70 scientists from different countries used so called open-top chambers (OTCs) to experimentally simulate the effects of warming on 28 tundra sites around the world. OTCs basically serve as mini-greenhouses, blocking wind and trapping heat to create local warming.

The warming experiments led to a 1.4 degrees Celsius increase in air temperature and a 0.4 degrees increase in soil temperature, along with a 1.6 percent drop in soil moisture. These changes boosted ecosystem respiration by 30 percent during the growing season, causing more carbon to be released because of increased metabolic activity in soil and plants. The changes persisted for at least 25 years after the start of the experimental warming — which earlier studies hadn’t revealed.

“We knew from earlier studies that we were likely to find an increase in respiration with warming, but we found a remarkable increase — nearly four times greater than previously estimated, though it varied with time and location,” says Sybryn Maes of Umeå University, the study’s lead author.

The increase in ecosystem respiration also varied with local soil conditions, such as nitrogen and pH levels. This means that differences in soil conditions and other factors lead to geographic differences in the response — some regions will see more carbon release than others. Understanding the links between soil conditions and respiration in response to warming is important for creating better climate models.

“Our work represents the first assessment of ecosystem respiration response to experimental warming across such a broad environmental gradient in the tundra, incorporating a comprehensive set of environmental drivers,” says Associate Professor Ellen Dorrepaal of Umeå University.

The study also offers a broader perspective on Arctic and alpine regions by predicting increases in respiration across the whole tundra area together with more detailed information about variation in the sensitivity of the response.

“We see that some areas, particularly parts of Siberia and Canada, exhibit greater sensitivity to warming,” says Professor Matti Kummu of Aalto University. “We anticipate an increase in respiration across the whole Arctic and alpine tundra, but more in situ data, particularly on the local soil conditions, is key to addressing the outstanding uncertainties and refining our predictions.”

Understanding how ecosystems shift in response to climate change and how these changes feed back into the climate is vital to get an accurate picture of how our world will change. These findings serve as an important baseline for improved climate models, but the researchers plan to refine them further by analyzing how the experimental sites change over time and expand the experiment’s scope to include new sites.



Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.