Connect with us

Solar Energy

Study finds plants would grow well in solar cell greenhouses

Published

on

Study finds plants would grow well in solar cell greenhouses

A recent study shows that lettuce can be grown in greenhouses that filter out wavelengths of light used to generate solar power, demonstrating the feasibility of using see-through solar panels in greenhouses to generate electricity.

“We were a little surprised – there was no real reduction in plant growth or health,” says Heike Sederoff, co-corresponding author of the study and a professor of plant biology at North Carolina State University. “”It means the idea of integrating transparent solar cells into greenhouses can be done.””

Because plants do not use all of the wavelengths of light for photosynthesis, researchers have explored the idea of creating semi-transparent organic solar cells that primarily absorb wavelengths of light that plants don’t rely on, and incorporating those solar cells into greenhouses. Earlier work from NC State focused on how much energy solar-powered greenhouses could produce. Depending on the design of the greenhouse, and where it is located, solar cells could make many greenhouses energy neutral – or even allow them to generate more power than they use.

But, until now, it wasn’t clear how these semi-transparent solar panels might affect greenhouse cropsTo address the issue, researchers grew crops of red leaf lettuce (Lactuca sativa) in greenhouse chambers for 30 days – from seed to full maturity. The growing conditions, from temperature and water to fertilizer and CO2 concentration, were all constant – except for light.

A control group of lettuces was exposed to the full spectrum of white light. The rest of the lettuces were dived into three experimental groups. Each of those groups was exposed to light through different types of filters that absorbed wavelengths of light equivalent to what different types of semi-transparent solar cells would absorb.
“The total amount of light incident on the filters was the same, but the color composition of that light was different for each of the experimental groups,” says Harald Ade, co-corresponding author of the study and the Goodnight Innovation Distinguished Professor of Physics at NC State.

“Specifically, we manipulated the ratio of blue light to red light in all three filters to see how it affected plant growth,” Sederoff says.

To determine the effect of removing various wavelengths of light, the researchers assessed a host of plant characteristics. For example, the researchers paid close attention to visible characteristics that are important to growers, grocers and consumers, such as leaf number, leaf size, and how much the lettuces weighed. But they also assessed markers of plant health and nutritional quality, such as how much CO2 the plants absorbed and the levels of various antioxidants.

“Not only did we find no meaningful difference between the control group and the experimental groups, we also didn’t find any significant difference between the different filters,” says Brendan O’Connor, co-corresponding author of the study and an associate professor of mechanical and aerospace engineering at NC State.

“”There is also forthcoming work that delves into greater detail about the ways in which harvesting various wavelengths of light affects biological processes for lettuces, tomatoes and other crops,” Sederoff says.

“”This is promising for the future of solar-powered greenhouses,” Ade says. “Getting growers to use this technology would be a tough argument if there was a loss of productivity. But now it is a simple economic argument about whether the investment in new greenhouse technology would be offset by energy production and savings.””

“Based on the number of people who have contacted me about solar-powered greenhouses when we’ve published previous work in this space, there is a lot of interest from many growers,” O’Connor says. “I think that interest is only going to grow. We’ve seen enough proof-of-concept prototypes to know this technology is feasible in principle, we just need to see a company take the leap and begin producing to scale.””

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Innovative approach to perovskite solar cells achieves 24.5% efficiency

Published

on

By

Innovative approach to perovskite solar cells achieves 24.5% efficiency


Innovative approach to perovskite solar cells achieves 24.5% efficiency

by Simon Mansfield

Sydney, Australia (SPX) Mar 28, 2024






In groundbreaking research published in Nano Energy, a team led by Prof. CHEN Chong at the Hefei Institutes of Physical Science, part of the Chinese Academy of Sciences, has significantly improved the performance of perovskite solar cells (PSCs). By integrating inorganic nano-material tin sulfoxide (SnSO) as a dopant, they have boosted the photoelectric conversion efficiency (PCE) of PSCs to an impressive 24.5%.

Traditional methods of enhancing the charge transport in the critical hole transport layer (HTL) of PSCs involve the use of lithium trifluoromethanesulfonyl imide (Li-TFSI) to facilitate the oxidation of the HTL material spiro-OMeTAD. However, this method suffers from low doping efficiency and can leave excess Li-TFSI in the spiro-OMeTAD film, reducing its compactness and long-term conductivity. Additionally, the oxidation process typically requires 10-24 hours to achieve the desired electrical conductivity and work function.



The HFIPS team’s innovation lies in their development of a rapid and replicable method to control the oxidation of nanomaterials, using SnSO nanomaterial to pre-oxidize spiro-OMeTAD in precursor solutions. This novel approach not only enhances conductivity but also optimizes the energy level position of the HTL, culminating in a high PCE of 24.5%.



One of the key advantages of the SnSO-regulated spiro-OMeTAD HTL is its pinhole-free, uniform, and smooth morphology, which maintains its performance and physical integrity even under challenging conditions of high temperature and humidity. Additionally, the oxidation process facilitated by this method is significantly faster, taking only a few hours- a crucial factor in improving the commercial production efficiency of PSCs.



Prof. CHEN Chong highlighted the importance of this breakthrough, stating, “Also, the oxidation process only takes a few hours, which is good for improving the commercial preparation efficiency of PSCs.” This advancement not only marks a significant leap in the efficiency and stability of PSCs but also holds substantial implications for their commercial viability.



Research Report:A nanomaterial-regulated oxidation of hole transporting layer for highly stable and efficient perovskite solar cells


Related Links

Hefei Institutes of Physical Science

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Revolutionary technique boosts flexible solar cell efficiency to record high

Published

on

By

Revolutionary technique boosts flexible solar cell efficiency to record high


Revolutionary technique boosts flexible solar cell efficiency to record high

by Simon Mansfield

Sydney, Australia (SPX) Mar 28, 2024






Researchers at Tsinghua University have made a significant breakthrough in the efficiency of flexible solar cells, leveraging a novel fabrication technique to set a new efficiency record. This advancement addresses the longstanding challenge of the lower energy conversion efficiency in flexible solar cells compared to their rigid counterparts, offering promising implications for aerospace and flexible electronics applications.

Flexible perovskite solar cells (FPSCs), despite their potential, have historically lagged in efficiency due to the polyethylene terephthalate (PET)-based flexible substrate’s inherent softness and inhomogeneity. This limitation, coupled with durability issues arising from the substrate’s susceptibility to water and oxygen infiltration, has hindered the practical deployment of FPSCs.



The team from the State Key Laboratory of Power System Operation and Control at Tsinghua University, alongside collaborators from the Center for Excellence in Nanoscience at the National Center for Nanoscience and Technology in Beijing, introduced a chemical bath deposition (CBD) technique. This method facilitates the deposition of tin oxide (SnO2) on flexible substrates without the need for strong acids, which are detrimental to such substrates. Tin oxide is essential for the FPSCs as it acts as an electron transport layer, crucial for the cells’ power conversion efficiency.



Associate Professor Chenyi Yi, a senior author of the study, explained, “Our method utilizes SnSO4 tin sulfate instead of SnCl2 tin chloride, making it suitable for acid-sensitive flexible substrates. This approach not only enhances the efficiency of FPSCs but also their durability, with a new power conversion efficiency benchmark set at 25.09%, certified at 24.90%.”



The novel fabrication technique also contributes to the FPSCs’ stability, as demonstrated by the cells maintaining 90% of their initial efficiency after being bent 10,000 times. The researchers noted an improved high-temperature stability in SnSO4-based FPSCs over those made with SnCl2, pointing towards the dual benefits of efficiency and durability enhancements.



The research signifies a leap towards industrial-scale production of high-efficiency FPSCs, with potential applications ranging from wearable technology and portable electronics to aerospace power sources and large-scale renewable energy solutions. The team’s findings, supported by Ningyu Ren, Liguo Tan, Minghao Li, Junjie Zhou, Yiran Ye, Boxin Jiao, and Liming Ding, mark a pivotal step in transitioning FPSCs from laboratory to commercial use.



Research Report:25% – Efficiency flexible perovskite solar cells via controllable growth of SnO2


Related Links

Tsinghua University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

KAUST advances in perovskite-silicon tandem cells

Published

on

By

KAUST advances in perovskite-silicon tandem cells


KAUST advances in perovskite-silicon tandem cells

by Sophie Jenkins

London, UK (SPX) Mar 28, 2024






In 2009, researchers introduced perovskite-based solar cells, highlighting the potential of methylammonium lead bromide and methylammonium lead iodide-known as lead halide perovskites-for photovoltaic research. These materials, notable for their excellent light-absorbing properties, marked the beginning of an innovative direction in solar energy generation. Since then, the efficiency of perovskite solar cells has significantly increased, indicating a future where they are used alongside traditional silicon in solar panels.

Erkan Aydin, Stefaan De Wolf, and their team at King Abdullah University of Science and Technology (KAUST) have explored how this tandem technology could transition from experimental stages to commercial production. Perovskites are lauded for their low-temperature production process and their flexibility in application, offering a lighter, more adaptable, and potentially cost-effective alternative to silicon-based panels.



Combining perovskite with silicon in a single solar cell leverages the strengths of both materials, enhancing sunlight utilization and reducing losses that aren’t converted into electrical energy. “The synergy between perovskite and silicon technologies in tandem cells captures a broader spectrum of sunlight, minimizing energy loss and significantly boosting efficiency,” Aydin notes.



However, Aydin and his colleagues acknowledge challenges in scaling tandem solar-cell fabrication for the marketplace. For instance, the process of depositing perovskite on silicon surfaces is complicated by the silicon’s texture. Traditional laboratory methods like spin coating are not feasible for large-scale production due to their inefficiency and material wastage. Alternatives such as slot-die coating and physical vapor deposition present their own set of advantages and challenges.



Moreover, the durability of perovskite components under environmental stressors such as moisture, heat, and light remains a critical concern. Aydin emphasizes the need for focused research to enhance the reliability and lifespan of perovskite/silicon tandem cells, especially in harsh conditions.



Although tandem modules have already been demonstrated in proof-of-concept stages, the timeline for their market readiness is uncertain. Nonetheless, the successful development of efficient, commercial-grade perovskite/silicon solar cells is essential for meeting global energy demands sustainably.



Research Report:Pathways toward commercial perovskite/silicon tandem photovoltaics


Related Links

King Abdullah University of Science and Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.