Solar Energy
Study reveals plunge in lithium-ion battery costs
The cost of the rechargeable lithium-ion batteries used for phones, laptops, and cars has fallen dramatically over the last three decades, and has been a major driver of the rapid growth of those technologies. But attempting to quantify that cost decline has produced ambiguous and conflicting results that have hampered attempts to project the technology’s future or devise useful policies and research priorities.
Now, MIT researchers have carried out an exhaustive analysis of the studies that have looked at the decline in the prices these batteries, which are the dominant rechargeable technology in today’s world. The new study looks back over three decades, including analyzing the original underlying datasets and documents whenever possible, to arrive at a clear picture of the technology’s trajectory.
The researchers found that the cost of these batteries has dropped by 97 percent since they were first commercially introduced in 1991. This rate of improvement is much faster than many analysts had claimed and is comparable to that of solar photovoltaic panels, which some had considered to be an exceptional case. The new findings are reported today in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler and Associate Professor Jessika Trancik.
While it’s clear that there have been dramatic cost declines in some clean-energy technologies such as solar and wind, Trancik says, when they started to look into the decline in prices for lithium-ion batteries, “we saw that there was substantial disagreement as to how quickly the costs of these technologies had come down.” Similar disagreements showed up in tracing other important aspects of battery development, such as the ever-improving energy density (energy stored within a given volume) and specific energy (energy stored within a given mass).
“These trends are so consequential for getting us to where we are right now, and also for thinking about what could happen in the future,” says Trancik, who is an associate professor in MIT’s Institute for Data, Systems and Society. While it was common knowledge that the decline in battery costs was an enabler of the recent growth in sales of electric vehicles, for example, it was unclear just how great that decline had been.
Through this detailed analysis, she says, “we were able to confirm that yes, lithium-ion battery technologies have improved in terms of their costs, at rates that are comparable to solar energy technology, and specifically photovoltaic modules, which are often held up as kind of the gold standard in clean energy innovation.””
It may seem odd that there was such great uncertainty and disagreement about how much lithium-ion battery costs had declined, and what factors accounted for it, but in fact much of the information is in the form of closely held corporate data that is difficult for researchers to access.
Most lithium-ion batteries are not sold directly to consumers – you can’t run down to your typical corner drugstore to pick up a replacement battery for your iPhone, your PC, or your electric car. Instead, manufacturers buy lithium-ion batteries and build them into electronics and cars. Large companies like Apple or Tesla buy batteries by the millions, or manufacture them themselves, for prices that are negotiated or internally accounted for but never publicly disclosed.
In addition to helping to boost the ongoing electrification of transportation, further declines in lithium-ion battery costs could potentially also increase the batteries’ usage in stationary applications as a way of compensating for the intermittent supply of clean energy sources such as solar and wind. Both applications could play a significant role in helping to curb the world’s emissions of climate-altering greenhouse gases.
“”I can’t overstate the importance of these trends in clean energy innovation for getting us to where we are right now, where it starts to look like we could see rapid electrification of vehicles and we are seeing the rapid growth of renewable energy technologies,” Trancik says. “”Of course, there’s so much more to do to address climate change, but this has really been a game changer.””
The new findings are not just a matter of retracing the history of battery development, but of helping to guide the future, Ziegler points out. Combing all of the published literature on the subject of the cost reductions in lithium-ion cells, he found “very different measures of the historical improvement. And across a variety of different papers, researchers were using these trends to make suggestions about how to further reduce costs of lithium-ion technologies or when they might meet cost targets.”
But because the underlying data varied so much, “the recommendations that the researchers were making could be quite different.” Some studies suggested that lithium-ion batteries would not fall in cost quickly enough for certain applications, while others were much more optimistic. Such differences in data can ultimately have a real impact on the setting of research priorities and government incentives.
The researchers dug into the original sources of the published data, in some cases finding that certain primary data had been used in multiple studies that were later cited as separate sources, or that the original data sources had been lost along the way. And while most studies have focused only on the cost, Ziegler says it became clear that such a one-dimensional analysis might underestimate how quickly lithium-ion technologies improved; in addition to cost, weight and volume are also key factors for both vehicles and portable electronics. So, the team added a second track to the study, analyzing the improvements in these parameters as well.
“Lithium-ion batteries were not adopted because they were the least expensive technology at the time,” Ziegler says. “There were less expensive battery technologies available. Lithium-ion technology was adopted because it allows you to put portable electronics into your hand, because it allows you to make power tools that last longer and have more power, and it allows us to build cars” that can provide adequate driving range. “It felt like just looking at dollars per kilowatt-hour was only telling part of the story,” he says.
That broader analysis helps to define what may be possible in the future, he adds: “We’re saying that lithium-ion technologies might improve more quickly for certain applications than would be projected by just looking at one measure of performance. By looking at multiple measures, you get essentially a clearer picture of the improvement rate, and this suggests that they could maybe improve more rapidly for applications where the restrictions on mass and volume are relaxed.”
Trancik adds the new study can play an important role in energy-related policymaking. “Published data trends on the few clean technologies that have seen major cost reductions over time, wind, solar, and now lithium-ion batteries, tend to be referenced over and over again, and not only in academic papers but in policy documents and industry reports,” she says.
“Many important climate policy conclusions are based on these few trends. For this reason, it is important to get them right. There’s a real need to treat the data with care, and to raise our game overall in dealing with technology data and tracking these trends.”
“”Battery costs determine price parity of electric vehicles with internal combustion engine vehicles,” says Venkat Viswanathan, an associate professor of mechanical engineering at Carnegie Mellon University, who was not associated with this work. “Thus, projecting battery cost declines is probably one of the most critical challenges in ensuring an accurate understanding of adoption of electric vehicles.”
Viswanathan adds that “the finding that cost declines may occur faster than previously thought will enable broader adoption, increasing volumes, and leading to further cost declines. … The datasets curated, analyzed and released with this paper will have a lasting impact on the community.”
Solar Energy
More energy and oil possible through combining photovoltaic plants with hedgerow olive groves
More energy and oil possible through combining photovoltaic plants with hedgerow olive groves
by Hugo Ritmico
Madrid, Spain (SPX) Nov 20, 2024
The integration of photovoltaic plants on agricultural land has long sparked debate over balancing energy production with crop cultivation. Now, the innovative approach of combining both has gained momentum with promising results. This “agrivoltaic” system, which involves placing solar panels within agricultural setups, has been examined by a University of Cordoba research team to see if solar energy and agricultural production could mutually enhance each other.
The research group, including Marta Varo Martinez, Luis Manuel Fernandez de Ahumada, and Rafael Lopez Luque from the Physics for Renewable Energies and Resources group, along with Alvaro Lopez Bernal and Francisco Villalobos from the Soil-Water-Plant Relations group, developed a model that simulates an agrivoltaic system in hedgerow olive plantations. This simulation model combined predictions for oil yield from olive hedgerows and energy generation from solar collectors to assess combined productivity. The study concluded that using both in tandem increased overall productivity, marking a potential shift in land-use strategy that could cater to the needs for both clean energy and food.
The key findings show that mutual benefits arise when solar panels provide shade, acting as windbreaks that don’t compete for water, enhancing agricultural production. Meanwhile, the cooling effect from plant evapotranspiration can improve the efficiency of solar collectors by reducing their temperature, boosting energy output.
This model allows researchers to experiment with various collector configurations, adjusting heights, widths, and spacing, to pinpoint the most effective designs. Despite generally positive outcomes, the team noted that overly dense arrangements might limit space for machinery or complicate maintenance of the olive grove. The approach underscores the importance of balancing land-use density and operational accessibility.
Research Report:Simulation model for electrical and agricultural productivity of an olive hedgerow Agrivoltaic system
Related Links
University of Cordoba
All About Solar Energy at SolarDaily.com
Solar Energy
New initiative empowers Native American women with solar training
New initiative empowers Native American women with solar training
by Clarence Oxford
Los Angeles CA (SPX) Nov 20, 2024
Native American women across the country are gaining access to hands-on training in photovoltaic panel installation aimed at empowering them to establish solar systems in their communities and homes on tribal land.
Sandra Begay, an engineer at Sandia National Laboratories and a Navajo Nation member, is one of four mentors guiding this effort.
This training initiative is part of a Cooperative Research and Development Agreement between Sandia and Red Cloud Renewable, a nonprofit organization in Pine Ridge, South Dakota, that focuses on advancing energy independence for tribal members and communities.
Known as the Bridging Renewable Industry Divides in Gender Equality, or BRIDGE, Program, the initiative provides a five-week immersive training experience that emphasizes practical skills in photovoltaic installation.
In August, Begay joined the first group of participants in South Dakota.
“Five weeks is a long time to be away from home,” Begay said. “I provided encouragement and reminded the women that they made the right choice to participate in this program. We also used the time to reflect on what they learned.”
Participants are taught the components of photovoltaic systems and how to install them safely and effectively.
Begay also provided insight into the energy challenges faced by tribal communities.
“There are more than 20,000 homes on the Navajo Nation and some rural homes on the Hopi reservation that don’t have electricity. These are off-grid homes,” Begay said, noting that many of these homes depend on diesel generators. “We’re looking at a clean energy future. We want to move away from those types of fuels and look at clean energy sources such as solar.”
She highlighted that large-scale solar projects are being developed by the Navajo Nation and the Mountain Ute Tribe in Colorado.
“This program will provide participants with new employment opportunities and a better understanding of where we’re headed with clean energy,” Begay said.
Red Cloud Renewable also supports the women with resume building, interview training, networking, and job placement services.
With over 30 years of experience championing renewable energy in Native American communities, Begay is committed to maintaining relationships with participants.
“I am making a long-term commitment to the women in the BRIDGE Program,” Begay said. “I will share any job openings I see with them and support them in their job searches.”
Teamwork for success
Begay emphasized the critical role teamwork plays in photovoltaic installations.
“Photovoltaic installation happens with a team of people. How do you work through that group dynamic? How do you work with each other as a team? Those questions are underemphasized in the work we do. They’re going to rely on each other when installing photovoltaic systems,” she said.
Alicia Hayden, Red Cloud Renewable’s communications manager, noted the strong bond formed among the participants.
“What stood out to me was the incredible camaraderie among the women,” Hayden said. “They were genuinely supportive of each other and grateful to be participating in this program alongside women who share similar backgrounds.”
Funded by the Department of Energy’s Solar Energy Technology Office, the project is set to continue over the next few years and aims to train two additional groups, eventually involving around 45 women.
“These women will be equipped to take on installer jobs within their own reservations, bringing valuable skills and opportunities for sustainable development to their people,” Hayden said.
Despite being highly underrepresented in the solar industry – comprising just 0.05% of the sector, according to Red Cloud Renewable – Native American women stand to gain from this initiative.
Begay expressed optimism about the impact of the BRIDGE Program.
“It’s very gratifying both professionally and personally to see where we can help women who are underrepresented in the workforce, let alone in a unique technology like photovoltaic installation,” Begay said. “We’re seeding ideas for the women that they would never have thought of doing. I think that’s what’s unique.”
Related Links
Sandia National Laboratories
All About Solar Energy at SolarDaily.com
Solar Energy
Perovskite advancements improve solar cell efficiency and longevity
Perovskite advancements improve solar cell efficiency and longevity
by Sophie Jenkins
London, UK (SPX) Nov 20, 2024
A global team led by the University of Surrey, in collaboration with Imperial College London, has pioneered a method to enhance the efficiency and durability of solar cells constructed from perovskite by addressing an unseen degradation pathway.
The University of Surrey’s Advanced Technology Institute (ATI) detailed their findings in ‘Energy and Environmental Science’, showing that by employing specific design strategies, they successfully created lead-tin perovskite solar cells achieving over 23% power conversion efficiency (PCE) – a significant result for this material type. Notably, these improvements also boosted the operational lifespan of these cells by 66%. PCE measures the proportion of sunlight converted to usable energy by a solar cell.
While traditional silicon solar panels are already widely used, advancements are steering towards perovskite/silicon hybrid panels, and fully perovskite-based panels promise even higher efficiencies. However, improving the stability and efficiency of lead-tin perovskite cells remains a significant hurdle. This research by the University of Surrey sheds light on mechanisms contributing to these limitations and offers a pathway to overcoming them, aiding in the broader advancement of solar technology.
Hashini Perera, Ph.D. student and lead author at ATI, stated: “The understanding we have developed from this work has allowed us to identify a strategy that improves the efficiency and extends the operational lifetime of these devices when exposed to ambient conditions. This advancement is a major step towards high efficiency, long-lasting solar panels which will give more people access to affordable clean energy while reducing the reliance on fossil fuels and global carbon emissions.”
The team focused on minimizing losses caused by the hole transport layer, crucial for solar cell functionality. By introducing an iodine-reducing agent, they mitigated the degradation effects, enhancing both the cell’s efficiency and its lifespan. This innovation paves the way for more sustainable and economically feasible solar technology.
Dr. Imalka Jayawardena from the University of Surrey’s ATI, co-author of the study, said: “By significantly enhancing the efficiency of our perovskite-based solar cells, we are moving closer to producing cheaper and more sustainable solar panels. We are already working on refining these materials, processes and the device architecture to tackle the remaining challenges.”
Professor Ravi Silva, Director of the ATI, added: “This research brings us closer to panels that not only generate more power over their lifetime but are also longer lasting. Greater efficiency and fewer replacements mean more green energy with less waste. The University of Surrey are in the process of building a 12.5MW solar farm, where we can test some of these modules. We’re confident that our innovative perovskite research will accelerate the widespread commercial adoption of perovskite-based solar panels.”
This progress aligns with the UN Sustainable Development Goals, specifically Goals 7 (affordable and clean energy), 9 (industry, innovation, and infrastructure), and 13 (climate action).
Research Report:23.2% efficient low band gap perovskite solar cells with cyanogen management
Related Links
University of Surrey
All About Solar Energy at SolarDaily.com
-
Solar Energy3 years ago
DLR testing the use of molten salt in a solar power plant in Portugal
-
world news1 year ago
Gulf, France aid Gaza, Russia evacuates citizens
-
Camera1 year ago
DJI Air 3 vs. Mini 4 Pro: which compact drone is best?
-
world news1 year ago
Strong majority of Americans support Israel-Hamas hostage deal
-
Camera4 years ago
Charles ‘Chuck’ Geschke, co-founder of Adobe and inventor of the PDF, dies at 81
-
Camera1 year ago
Sony a9 III: what you need to know
-
Solar Energy12 months ago
Glencore eyes options on battery recycling project
-
TOP SCEINCE7 months ago
Can animals count?