Connect with us

Solar Energy

Study reveals plunge in lithium-ion battery costs

Published

on

Study reveals plunge in lithium-ion battery costs

The cost of the rechargeable lithium-ion batteries used for phones, laptops, and cars has fallen dramatically over the last three decades, and has been a major driver of the rapid growth of those technologies. But attempting to quantify that cost decline has produced ambiguous and conflicting results that have hampered attempts to project the technology’s future or devise useful policies and research priorities.

Now, MIT researchers have carried out an exhaustive analysis of the studies that have looked at the decline in the prices these batteries, which are the dominant rechargeable technology in today’s world. The new study looks back over three decades, including analyzing the original underlying datasets and documents whenever possible, to arrive at a clear picture of the technology’s trajectory.

The researchers found that the cost of these batteries has dropped by 97 percent since they were first commercially introduced in 1991. This rate of improvement is much faster than many analysts had claimed and is comparable to that of solar photovoltaic panels, which some had considered to be an exceptional case. The new findings are reported today in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler and Associate Professor Jessika Trancik.

While it’s clear that there have been dramatic cost declines in some clean-energy technologies such as solar and wind, Trancik says, when they started to look into the decline in prices for lithium-ion batteries, “we saw that there was substantial disagreement as to how quickly the costs of these technologies had come down.” Similar disagreements showed up in tracing other important aspects of battery development, such as the ever-improving energy density (energy stored within a given volume) and specific energy (energy stored within a given mass).

“These trends are so consequential for getting us to where we are right now, and also for thinking about what could happen in the future,” says Trancik, who is an associate professor in MIT’s Institute for Data, Systems and Society. While it was common knowledge that the decline in battery costs was an enabler of the recent growth in sales of electric vehicles, for example, it was unclear just how great that decline had been.

Through this detailed analysis, she says, “we were able to confirm that yes, lithium-ion battery technologies have improved in terms of their costs, at rates that are comparable to solar energy technology, and specifically photovoltaic modules, which are often held up as kind of the gold standard in clean energy innovation.””

It may seem odd that there was such great uncertainty and disagreement about how much lithium-ion battery costs had declined, and what factors accounted for it, but in fact much of the information is in the form of closely held corporate data that is difficult for researchers to access.

Most lithium-ion batteries are not sold directly to consumers – you can’t run down to your typical corner drugstore to pick up a replacement battery for your iPhone, your PC, or your electric car. Instead, manufacturers buy lithium-ion batteries and build them into electronics and cars. Large companies like Apple or Tesla buy batteries by the millions, or manufacture them themselves, for prices that are negotiated or internally accounted for but never publicly disclosed.

In addition to helping to boost the ongoing electrification of transportation, further declines in lithium-ion battery costs could potentially also increase the batteries’ usage in stationary applications as a way of compensating for the intermittent supply of clean energy sources such as solar and wind. Both applications could play a significant role in helping to curb the world’s emissions of climate-altering greenhouse gases.

“”I can’t overstate the importance of these trends in clean energy innovation for getting us to where we are right now, where it starts to look like we could see rapid electrification of vehicles and we are seeing the rapid growth of renewable energy technologies,” Trancik says. “”Of course, there’s so much more to do to address climate change, but this has really been a game changer.””

The new findings are not just a matter of retracing the history of battery development, but of helping to guide the future, Ziegler points out. Combing all of the published literature on the subject of the cost reductions in lithium-ion cells, he found “very different measures of the historical improvement. And across a variety of different papers, researchers were using these trends to make suggestions about how to further reduce costs of lithium-ion technologies or when they might meet cost targets.”

But because the underlying data varied so much, “the recommendations that the researchers were making could be quite different.” Some studies suggested that lithium-ion batteries would not fall in cost quickly enough for certain applications, while others were much more optimistic. Such differences in data can ultimately have a real impact on the setting of research priorities and government incentives.

The researchers dug into the original sources of the published data, in some cases finding that certain primary data had been used in multiple studies that were later cited as separate sources, or that the original data sources had been lost along the way. And while most studies have focused only on the cost, Ziegler says it became clear that such a one-dimensional analysis might underestimate how quickly lithium-ion technologies improved; in addition to cost, weight and volume are also key factors for both vehicles and portable electronics. So, the team added a second track to the study, analyzing the improvements in these parameters as well.

“Lithium-ion batteries were not adopted because they were the least expensive technology at the time,” Ziegler says. “There were less expensive battery technologies available. Lithium-ion technology was adopted because it allows you to put portable electronics into your hand, because it allows you to make power tools that last longer and have more power, and it allows us to build cars” that can provide adequate driving range. “It felt like just looking at dollars per kilowatt-hour was only telling part of the story,” he says.

That broader analysis helps to define what may be possible in the future, he adds: “We’re saying that lithium-ion technologies might improve more quickly for certain applications than would be projected by just looking at one measure of performance. By looking at multiple measures, you get essentially a clearer picture of the improvement rate, and this suggests that they could maybe improve more rapidly for applications where the restrictions on mass and volume are relaxed.”

Trancik adds the new study can play an important role in energy-related policymaking. “Published data trends on the few clean technologies that have seen major cost reductions over time, wind, solar, and now lithium-ion batteries, tend to be referenced over and over again, and not only in academic papers but in policy documents and industry reports,” she says.

“Many important climate policy conclusions are based on these few trends. For this reason, it is important to get them right. There’s a real need to treat the data with care, and to raise our game overall in dealing with technology data and tracking these trends.”

“”Battery costs determine price parity of electric vehicles with internal combustion engine vehicles,” says Venkat Viswanathan, an associate professor of mechanical engineering at Carnegie Mellon University, who was not associated with this work. “Thus, projecting battery cost declines is probably one of the most critical challenges in ensuring an accurate understanding of adoption of electric vehicles.”

Viswanathan adds that “the finding that cost declines may occur faster than previously thought will enable broader adoption, increasing volumes, and leading to further cost declines. … The datasets curated, analyzed and released with this paper will have a lasting impact on the community.”

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Cheap and environmentally friendly – the next generation LEDs may soon be here

Published

on

By

Cheap and environmentally friendly – the next generation LEDs may soon be here


Cheap and environmentally friendly – the next generation LEDs may soon be here

by Anders Torneholm

Linkoping, Sweden (SPX) Mar 13, 2025






Cost, technical performance and environmental impact – these are the three most important aspects for a new type of LED technology to have a broad commercial impact on society. This has been demonstrated by researchers at Linkoping University in a study published in Nature Sustainability.

“Perovskite LEDs are cheaper and easier to manufacture than traditional LEDs, and they can also produce vibrant and intense colours if used in screens. I’d say that this is the next generation of LED technology,” says Feng Gao, professor of optoelectronics at Linkoping University.



However, for a technological shift to take place, where today’s LEDs are replaced with those based on the material perovskite, more than just technical performance is required. That is why Feng Gao’s research group has collaborated with Professor Olof Hjelm and John Laurence Esguerra, assistant professor at LiU. They specialise in how innovations contributing to environmental sustainability can be introduced to the market.



Together, they have investigated the environmental impact and cost of 18 different perovskite LEDs, knowledge that is currently incomplete. The study was conducted using so-called life cycle assessment and techno-economic assessment.



Such analyses require a clear system definition – that is, what is included and not in terms of cost and environmental impact. Within this framework, what happens from the product being created until it can no longer be used is investigated. The life cycle of the product, from cradle to grave, can be divided into five different phases: raw material production, manufacturing, distribution, use and decommissioning.

“We’d like to avoid the grave. And things get more complicated when you take recycling into account. But here we show that it’s most important to think about the reuse of organic solvents and how raw materials are produced, especially if they are rare materials,” says Olof Hjelm.



One example where the life cycle analysis provides guidance concerns the small amount of toxic lead found in perovskite LEDs. This is currently necessary for the perovskites to be effective. But, according to Olof Hjelm, focusing only on lead is a mistake. There are also many other materials in LEDs, such as gold.



“Gold production is extremely toxic. There are byproducts such as mercury and cyanide. It’s also very energy-consuming,” he says.



The greatest environmental gain would instead be achieved by replacing gold with copper, aluminium or nickel, while maintaining the small amount of lead needed for the LED to function optimally.



The researchers have concluded that perovskite LEDs have great potential for commercialisation in the long term. Maybe they can even replace today’s LEDs, thanks to lower costs and less environmental impact. The big issue is longevity. However, the development of perovskite LEDs is accelerating and their life expectancy is increasing. The researchers believe that it needs to reach about 10,000 hours for a positive environmental impact, something they think is achievable. Today, the best perovskite LEDs last for hundreds of hours.



Muyi Zhang, PhD student at the Department of Physics, Chemistry and Biology at LiU, says that much of the research focus so far is on increasing the technical performance of LED, something he believes will change.



“We want what we develop to be used in the real world. But then, we as researchers need to broaden our perspective. If a product has high technical performance but is expensive and isn’t environmentally sustainable, it may not be highly competitive in the market. That mindset will increasingly come to guide our research.”



Research Report:Towards sustainable perovskite light-emitting diodes


Related Links

Linkoping University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Making solar projects cheaper and faster with portable factories

Published

on

By

Making solar projects cheaper and faster with portable factories


Making solar projects cheaper and faster with portable factories

by Zach Winn | MIT News

Boston MA (SPX) Mar 13, 2025






As the price of solar panels has plummeted in recent decades, installation costs have taken up a greater share of the technology’s overall price tag. The long installation process for solar farms is also emerging as a key bottleneck in the deployment of solar energy.

Now the startup Charge Robotics is developing solar installation factories to speed up the process of building large-scale solar farms. The company’s factories are shipped to the site of utility solar projects, where equipment including tracks, mounting brackets, and panels are fed into the system and automatically assembled. A robotic vehicle autonomously puts the finished product – which amounts to a completed section of solar farm – in its final place.



“We think of this as the Henry Ford moment for solar,” says CEO Banks Hunter ’15, who founded Charge Robotics with fellow MIT alumnus Max Justicz ’17. “We’re going from a very bespoke, hands on, manual installation process to something much more streamlined and set up for mass manufacturing. There are all kinds of benefits that come along with that, including consistency, quality, speed, cost, and safety.”



Last year, solar energy accounted for 81 percent of new electric capacity in the U.S., and Hunter and Justicz see their factories as necessary for continued acceleration in the industry.



The founders say they were met with skepticism when they first unveiled their plans. But in the beginning of last year, they deployed a prototype system that successfully built a solar farm with SOLV Energy, one of the largest solar installers in the U.S. Now, Charge has raised $22 million for its first commercial deployments later this year.

From surgical robots to solar robots

While majoring in mechanical engineering at MIT, Hunter found plenty of excuses to build things. One such excuse was Course 2.009 (Product Engineering Processes), where he and his classmates built a smart watch for communication in remote areas.

After graduation, Hunter worked for the MIT alumni-founded startups Shaper Tools and Vicarious Surgical. Vicarious Surgical is a medical robotics company that has raised more than $450 million to date. Hunter was the second employee and worked there for five years.



“A lot of really hands on, project-based classes at MIT translated directly into my first roles coming out of school and set me up to be very independent and run large engineering projects,” Hunter says, “Course 2.009, in particular, was a big launch point for me. The founders of Vicarious Surgical got in touch with me through the 2.009 network.”



As early as 2017, Hunter and Justicz, who majored in mechanical engineering and computer science, had discussed starting a company together. But they had to decide where to apply their broad engineering and product skillsets.



“Both of us care a lot about climate change. We see climate change as the biggest problem impacting the greatest number of people on the planet,” Hunter says. “Our mentality was if we can build anything, we might as well build something that really matters.”



In the process of cold calling hundreds of people in the energy industry, the founders decided solar was the future of energy production because its price was decreasing so quickly.



“It’s becoming cheaper faster than any other form of energy production in human history,” Hunter says.



When the founders began visiting construction sites for the large, utility-scale solar farms that make up the bulk of energy generation, it wasn’t hard to find the bottlenecks. The first site they traveled to was in the Mojave Desert in California. Hunter describes it as a massive dust bowl where thousands of workers spent months repeating tasks like moving material and assembling the same parts, over and over again.



“The site had something like 2 million panels on it, and every single one was assembled and fastened the same way by hand,” Hunter says. “Max and I thought it was insane. There’s no way that can scale to transform the energy grid in a short window of time.”



Hunter says he heard from each of the largest solar companies in the U.S. that their biggest limitation for scaling was labor shortages. The problem was slowing growth and killing projects.



Hunter and Justicz founded Charge Robotics in 2021 to break through that bottleneck. Their first step was to order utility solar parts and assemble them by hand in their backyards.



“From there, we came up with this portable assembly line that we could ship out to construction sites and then feed in the entire solar system, including the steel tracks, mounting brackets, fasteners, and the solar panels,” Hunter explains. “The assembly line robotically assembles all those pieces to produce completed solar bays, which are chunks of a solar farm.”



Each bay represents a 40-foot piece of the solar farm and weighs about 800 pounds. A robotic vehicle brings it to its final location in the field. Hunter says Charge’s system automates all mechanical installation except for the process of pile driving the first metal stakes into the ground.



Charge’s assembly lines also have machine-vision systems that scan each part to ensure quality, and the systems work with the most common solar parts and panel sizes.

From pilot to product

When the founders started pitching their plans to investors and construction companies, people didn’t believe it was possible.



“The initial feedback was basically, ‘This will never work,'” Hunter says. “But as soon as we took our first system out into the field and people saw it operating, they got much more excited and started believing it was real.”



Since that first deployment, Charge’s team has been making its system faster and easier to operate. The company plans to set up its factories at project sites and run them in partnership with solar construction companies. The factories could even run alongside human workers.



“With our system, people are operating robotic equipment remotely rather than putting in the screws themselves,” Hunter explains. “We can essentially deliver the assembled solar to customers. Their only responsibility is to deliver the materials and parts on big pallets that we feed into our system.”



Hunter says multiple factories could be deployed at the same site and could also operate 24/7 to dramatically speed up projects.



“We are hitting the limits of solar growth because these companies don’t have enough people,” Hunter says. “We can build much bigger sites much faster with the same number of people by just shipping out more of our factories. It’s a fundamentally new way of scaling solar energy.”



Video: “Charge Robotics Sunrise fully autonomous solar construction system”


Related Links

Department of Mechanical Engineering

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Hybrid Transparent Electrodes Boost Efficiency and Lifespan of Perovskite Solar Cells

Published

on

By

Hybrid Transparent Electrodes Boost Efficiency and Lifespan of Perovskite Solar Cells


Hybrid Transparent Electrodes Boost Efficiency and Lifespan of Perovskite Solar Cells

by Simon Mansfield

Sydney, Australia (SPX) Feb 21, 2025






Bifacial perovskite solar cells, known for their ability to capture sunlight from both the front and rear surfaces, have taken a significant step forward thanks to researchers at the Indian Institute of Technology (IIT) Dharwad. Their development of a novel NiO/Ag/NiO (NAN) hybrid transparent electrode has led to enhancements in efficiency, durability, and infrared transparency, opening new possibilities for solar energy applications.

A recent study published in the Journal of Photonics for Energy (JPE) details how the IIT Dharwad team designed and fabricated highly transparent bifacial solar cells utilizing a three-layer NAN electrode. This innovative structure, created using a low-energy physical vapor deposition method, resulted in an electrode with extremely low electrical resistance and high transmittance of visible light.



When incorporated into the bifacial solar cells, the NAN transparent electrode delivered impressive power conversion efficiencies (PCE), achieving 9.05% and 6.54% when exposed to light from different directions. The cells also exhibited a high bifaciality factor of 72%, demonstrating their effectiveness in utilizing light from both sides.



Beyond efficiency, these solar cells displayed exceptional durability, retaining 80% of their initial performance for over 1,000 hours without the need for protective encapsulation. Additionally, their ability to transmit substantial near-infrared light makes them suitable for applications such as thermal windows and advanced optoelectronic technologies.



With a thickness of less than 40 nm, the NAN electrode is particularly advantageous for integration into building materials and tandem solar cell systems. Senior researcher Dhriti Sundar Ghosh, an associate professor of physics at IIT Dharwad, emphasized the broad implications of their work, stating, “This study offers a blueprint for designing transparent electrodes in bifacial perovskite solar cells, paving the way for advancements in tandem devices, agrivoltaics, and automotive solar technologies.”



The findings reinforce the growing potential of bifacial perovskite solar cells in renewable energy solutions, contributing to the development of more efficient and adaptable solar power technologies.



Research Report:Hybrid top transparent electrode for infrared-transparent bifacial perovskite solar cells


Related Links

Indian Institute of Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending