Connect with us

TOP SCEINCE

This alloy is kinky

Published

on

This alloy is kinky


Researchers have uncovered a remarkable metal alloy that won’t crack at extreme temperatures due to kinking, or bending, of crystals in the alloy at the atomic level.  A metal alloy composed of niobium, tantalum, titanium, and hafnium has shocked materials scientists with its impressive strength and toughness at both extremely hot and cold temperatures, a combination of properties that seemed so far to be nearly impossible to achieve. In this context, strength is defined as how much force a material can withstand before it is permanently deformed from its original shape, and toughness is its resistance to fracturing (cracking). The alloy’s resilience to bending and fracture across an enormous range of conditions could open the door for a novel class of materials for next-generation engines that can operate at higher efficiencies.

The team, led by Robert Ritchie at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, in collaboration with the groups led by professors Diran Apelian at UC Irvine and Enrique Lavernia at Texas A&M University, discovered the alloy’s surprising properties and then figured out how they arise from interactions in the atomic structure. Their work is described in a study that was published April 11, 2024 in Science.

“The efficiency of converting heat to electricity or thrust is determined by the temperature at which fuel is burned — the hotter, the better. However, the operating temperature is limited by the structural materials which must withstand it,” said first author David Cook, a Ph.D. student in Ritchie’s lab. “We have exhausted the ability to further optimize the materials we currently use at high temperatures, and there’s a big need for novel metallic materials. That’s what this alloy shows promise in.”

The alloy in this study is from a new class of metals known as refractory high or medium entropy alloys (RHEAs/RMEAs). Most of the metals we see in commercial or industrial applications are alloys made of one main metal mixed with small quantities of other elements, but RHEAs and RMEAs are made by mixing near-equal quantities of metallic elements with very high melting temperatures, which gives them unique properties that scientists are still unraveling. Ritchie’s group has been investigating these alloys for several years because of their potential for high-temperature applications.

“Our team has done previous work on RHEAs and RMEAs and we have found that these materials are very strong, but generally possess extremely low fracture toughness, which is why we were shocked when this alloy displayed exceptionally high toughness,” said co-corresponding author Punit Kumar, a postdoctoral researcher in the group.

According to Cook, most RMEAs have a fracture toughness less than 10 MPa√m, which makes them some of the most brittle metals on record. The best cryogenic steels, specially engineered to resist fracture, are about 20 times tougher than these materials. Yet the niobium, tantalum, titanium, and hafnium (Nb45Ta25Ti15Hf15) RMEA alloy was able to beat even the cryogenic steel, clocking in at over 25 times tougher than typical RMEAs at room temperature.

But engines don’t operate at room temperature. The scientists evaluated strength and toughness at five temperatures total: -196°C (the temperature of liquid nitrogen), 25°C (room temperature), 800°C, 950°C, and 1200°C. The last temperature is about 1/5 the surface temperature of the sun.

The team found that the alloy had the highest strength in the cold and became slightly weaker as the temperature rose, but still boasted impressive figures throughout the wide range. The fracture toughness, which is calculated from how much force it takes to propagate an existing crack in a material, was high at all temperatures.

Unraveling the atomic arrangements

Almost all metallic alloys are crystalline, meaning that the atoms inside the material are arranged in repeating units. However, no crystal is perfect, they all contain defects. The most prominent defect that moves is called the dislocation, which is an unfinished plane of atoms in the crystal. When force is applied to a metal it causes many dislocations to move to accommodate the shape change. For example, when you bend a paper clip which is made of aluminum, the movement of dislocations inside the paper clip accommodates the shape change. However, the movement of dislocations becomes more difficult at lower temperatures and as a result many materials become brittle at low temperatures because dislocations cannot move. This is why the steel hull of the Titanic fractured when it hit an iceberg. Elements with high melting temperatures and their alloys take this to the extreme, with many remaining brittle up to even 800°C. However, this RMEA bucks the trend, withstanding snapping even at temperatures as low as liquid nitrogen (-196°C).

To understand what was happening inside the remarkable metal, co-investigator Andrew Minor and his team analyzed the stressed samples, alongside unbent and uncracked control samples, using four-dimensional scanning transmission electron microscopy (4D-STEM) and scanning transmission electron microscopy (STEM) at the National Center for Electron Microscopy, part of Berkeley Lab’s Molecular Foundry.

The electron microscopy data revealed that the alloy’s unusual toughness comes from an unexpected side effect of a rare defect called a kink band. Kink bands form in a crystal when an applied force causes strips of the crystal to collapse on themselves and abruptly bend. The direction in which the crystal bends in these strips increases the force that dislocations feel, causing them to move more easily. On the bulk level, this phenomenon causes the material to soften (meaning that less force has to be applied to the material as it is deformed). The team knew from past research that kink bands formed easily in RMEAs, but assumed that the softening effect would make the material less tough by making it easier for a crack to spread through the lattice. But in reality, this is not the case.

“We show, for the first time, that in the presence of a sharp crack between atoms, kink bands actually resist the propagation of a crack by distributing damage away from it, preventing fracture and leading to extraordinarily high fracture toughness,” said Cook.

The Nb45Ta25Ti15Hf15 alloy will need to undergo a lot more fundamental research and engineering testing before anything like a jet plane turbine or SpaceX rocket nozzle is made from it, said Ritchie, because mechanical engineers rightfully require a deep understanding of how their materials perform before they use them in the real world. However, this study indicates that the metal has potential to build the engines of the future.

This research was conducted by David H. Cook, Punit Kumar, Madelyn I. Payne, Calvin H. Belcher, Pedro Borges, Wenqing Wang, Flynn Walsh, Zehao Li, Arun Devaraj, Mingwei Zhang, Mark Asta, Andrew M. Minor, Enrique J. Lavernia, Diran Apelian, and Robert O. Ritchie, scientists at Berkeley Lab, UC Berkeley, Pacific Northwest National Laboratory, and UC Irvine, with funding from the Department of Energy (DOE) Office of Science. Experimental and computational analysis was conducted at the Molecular Foundry and the National Energy Research Scientific Computing Center — both are DOE Office of Science user facilities.



Source link

Continue Reading
Click to comment

Leave a Reply

TOP SCEINCE

New drug shows promise in clearing HIV from brain

Published

on

By

This alloy is kinky


An experimental drug originally developed to treat cancer may help clear HIV from infected cells in the brain, according to a new Tulane University study.

For the first time, researchers at Tulane National Primate Research Center found that a cancer drug significantly reduced levels of SIV, the nonhuman primate equivalent of HIV, in the brain by targeting and depleting certain immune cells that harbor the virus.

Published in the journal Brain, this discovery marks a significant step toward eliminating HIV from hard-to-reach reservoirs where the virus evades otherwise effective treatment.

“This research is an important step in tackling brain-related issues caused by HIV, which still affect people even when they are on effective HIV medication,” said lead study author Woong-Ki Kim, PhD, associate director for research at Tulane National Primate Research Center. “By specifically targeting the infected cells in the brain, we may be able to clear the virus from these hidden areas, which has been a major challenge in HIV treatment.”

Antiretroviral therapy (ART) is an essential component of successful HIV treatment, maintaining the virus at undetectable levels in the blood and transforming HIV from a terminal illness into a manageable condition. However, ART does not completely eradicate HIV, necessitating lifelong treatment. The virus persists in “viral reservoirs” in the brain, liver, and lymph nodes, where it remains out of reach of ART.

The brain has been a particularly challenging area for treatment due to the blood-brain barrier — a protective membrane that shields it from harmful substances but also blocks treatments, allowing the virus to persist. In addition, cells in the brain known as macrophages are extremely long-lived, making them difficult to eradicate once they become infected.

Infection of macrophages is thought to contribute to neurocognitive dysfunction, experienced by nearly half of those living with HIV. Eradicating the virus from the brain is critical for comprehensive HIV treatment and could significantly improve the quality of life for those with HIV-related neurocognitive problems.

Researchers focused on macrophages, a type of white blood cell that harbors HIV in the brain. By using a small molecule inhibitor to block a receptor that increases in HIV-infected macrophages, the team successfully reduced the viral load in the brain. This approach essentially cleared the virus from brain tissue, providing a potential new treatment avenue for HIV.

The small molecule inhibitor used, BLZ945, has previously been studied for therapeutic use in amyotrophic lateral sclerosis (ALS) and brain cancer, but never before in the context of clearing HIV from the brain.

The study, which took place at the Tulane National Primate Research Center, utilized three groups to model human HIV infection and treatment: an untreated control group, and two groups treated with either a low or high dose of the small molecule inhibitor for 30 days. The high-dose treatment lead to a notable reduction in cells expressing HIV receptor sites, as well as a 95-99% decrease in viral DNA loads in the brain .

In addition to reducing viral loads, the treatment did not significantly impact microglia, the brain’s resident immune cells, which are essential for maintaining a healthy neuroimmune environment. It also did not show signs of liver toxicity at the doses tested.

The next step for the research team is to test this therapy in conjunction with ART to assess its efficacy in a combined treatment approach. This could pave the way for more comprehensive strategies to eradicate HIV from the body entirely.

This research was funded by the National Institutes of Health, including grants from the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke, and was supported with resources from the Tulane National Primate Research Center base grant of the National Institutes of Health, P51 OD011104.



Source link

Continue Reading

TOP SCEINCE

Chemical analyses find hidden elements from renaissance astronomer Tycho Brahe’s alchemy laboratory

Published

on

By

This alloy is kinky


In the Middle Ages, alchemists were notoriously secretive and didn’t share their knowledge with others. Danish Tycho Brahe was no exception. Consequently, we don’t know precisely what he did in the alchemical laboratory located beneath his combined residence and observatory, Uraniborg, on the now Swedish island of Ven.

Only a few of his alchemical recipes have survived, and today, there are very few remnants of his laboratory. Uraniborg was demolished after his death in 1601, and the building materials were scattered for reuse.

However, during an excavation in 1988-1990, some pottery and glass shards were found in Uraniborg’s old garden. These shards were believed to originate from the basement’s alchemical laboratory. Five of these shards — four glass and one ceramic — have now undergone chemical analyses to determine which elements the original glass and ceramic containers came into contact with.

The chemical analyses were conducted by Professor Emeritus and expert in archaeometry, Kaare Lund Rasmussen from the Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark. Senior researcher and museum curator Poul Grinder-Hansen from the National Museum of Denmark oversaw the insertion of the analyses into historical context.

Enriched levels of trace elements were found on four of them, while one glass shard showed no specific enrichments. The study has been published in the journal Heritage Science.

“Most intriguing are the elements found in higher concentrations than expected — indicating enrichment and providing insight into the substances used in Tycho Brahe’s alchemical laboratory,” said Kaare Lund Rasmussen.

The enriched elements are nickel, copper, zinc, tin, antimony, tungsten, gold, mercury, and lead, and they have been found on either the inside or outside of the shards.

Most of them are not surprising for an alchemist’s laboratory. Gold and mercury were — at least among the upper echelons of society — commonly known and used against a wide range of diseases.

“But tungsten is very mysterious. Tungsten had not even been described at that time, so what should we infer from its presence on a shard from Tycho Brahe’s alchemy workshop?,” said Kaare Lund Rasmussen.

Tungsten was first described and produced in pure form more than 180 years later by the Swedish chemist Carl Wilhelm Scheele. Tungsten occurs naturally in certain minerals, and perhaps the element found its way to Tycho Brahe’s laboratory through one of these minerals. In the laboratory, the mineral might have undergone some processing that separated the tungsten, without Tycho Brahe ever realizing it.

However, there is also another possibility that Professor Kaare Lund Rasmussen emphasizes has no evidence whatsoever — but which could be plausible.

Already in the first half of the 1500s, the German mineralogist Georgius Agricola described something strange in tin ore from Saxony, which caused problems when he tried to smelt tin. Agricola called this strange substance in the tin ore “Wolfram” (German for Wolf’s froth, later renamed to tungsten in English).

“Maybe Tycho Brahe had heard about this and thus knew of tungsten’s existence. But this is not something we know or can say based on the analyses I have done. It is merely a possible theoretical explanation for why we find tungsten in the samples,” said Kaare Lund Rasmussen.

Tycho Brahe belonged to the branch of alchemists who, inspired by the German physician Paracelsus, tried to develop medicine for various diseases of the time: plague, syphilis, leprosy, fever, stomach aches, etc. But he distanced himself from the branch that tried to create gold from less valuable minerals and metals.

In line with the other medical alchemists of the time, he kept his recipes close to his chest and shared them only with a few selected individuals, such as his patron, Emperor Rudolph II, who allegedly received Tycho Brahe’s prescriptions for plague medicine.

We know that Tycho Brahe’s plague medicine was complicated to produce. It contained theriac, which was one of the standard remedies for almost everything at the time and could have up to 60 ingredients, including snake flesh and opium. It also contained copper or iron vitriol (sulphates), various oils, and herbs.

After various filtrations and distillations, the first of Brahe’s three recipes against plague was obtained. This could be made even more potent by adding tinctures of, for example, coral, sapphires, hyacinths, or potable gold.

“It may seem strange that Tycho Brahe was involved in both astronomy and alchemy, but when one understands his worldview, it makes sense. He believed that there were obvious connections between the heavenly bodies, earthly substances, and the body’s organs. Thus, the Sun, gold, and the heart were connected, and the same applied to the Moon, silver, and the brain; Jupiter, tin, and the liver; Venus, copper, and the kidneys; Saturn, lead, and the spleen; Mars, iron, and the gallbladder; and Mercury, mercury, and the lungs. Minerals and gemstones could also be linked to this system, so emeralds, for example, belonged to Mercury,” explained Poul Grinder-Hansen.

Kaare Lund Rasmussen has previously analyzed hair and bones from Tycho Brahe and found, among other elements, gold. This could indicate that Tycho Brahe himself had taken medicine that contained potable gold.



Source link

Continue Reading

TOP SCEINCE

Nitrogen emissions have a net cooling effect: But researchers warn against a climate solution

Published

on

By

This alloy is kinky


An international team of researchers has found that nitrogen emissions from fertilisers and fossil fuels have a net cooling effect on the climate. But they warn increasing atmospheric nitrogen has further damaging effects on the environment, calling for an urgent reduction in greenhouse gas emissions to halt global warming.

Published today in Nature, the paper found that reactive nitrogen released in the environment through human activities cools the climate by minus 0.34 watts per square metre. While global warming would have advanced further without the input of human-generated nitrogen, the amount would not offset the level of greenhouse gasses heating the atmosphere.

The paper was led by the Max Planck Institute in Germany and included authors from the University of Sydney. It comes one day after new data from the European Union’s Copernicus Climate Change Service indicated that Sunday, 21 July was the hottest day recorded in recent history.

The net cooling effect occurs in four ways:

  • Short-lived nitrogen oxides produced by the combustion of fossil fuels pollute the atmosphere by forming fine suspended particles which shield sunlight, in turn cooling the climate;

  • ammonia (a nitrogen and hydrogen-based compound) released into the atmosphere from the application of manure and artificial fertilisers has a similar effect;

  • nitrogen applied to crops allows plants to grow more abundantly, absorbing more CO2 from the atmosphere, enabling a cooling effect;

  • nitrogen oxides also play a role in the breakdown of atmospheric methane, a potent greenhouse gas.

The researchers warned that increasing atmospheric nitrogen was not a solution for combatting climate change.

“Nitrogen fertilisers pollute water and nitrogen oxides from fossil fuels pollute the air. Therefore, increasing rates of nitrogen in the atmosphere to combat climate change is not an acceptable compromise, nor is it a solution,” said Professor Federico Maggi from the University of Sydney’s School of Civil Engineering.

Sönke Zaehle from the Max Planck Institute said: “This may sound like good news, but you have to bear in mind that nitrogen emissions have many harmful effects, for example on health, biodiversity and the ozone layer. The current findings, therefore, are no reason to gloss over the harmful effects, let alone see additional nitrogen input as a means of combatting global warming.”

Elemental nitrogen, which makes up around 78 percent of the air, is climate-neutral, but other reactive nitrogen compounds can have direct or indirect effects on the global climate — sometimes warming and at other times cooling. Nitrous oxide (N2O) is an almost 300 times more potent greenhouse gas than CO2. Other forms of nitrogen stimulate the formation of ozone in the troposphere, which is a potent greenhouse gas and enhances global warming.

Professor Maggi said the research was important as it helped the team gain an understanding of the net-effect of the distribution of nitrogen emissions from agriculture.

“This work is an extraordinary example of how complex interactions at planetary scales cannot be captured with simplistic assessment tools. It shows the importance of developing mathematical models that can show the emergence of nonlinear — or unproportional — effects across soil, land, and atmosphere,” he said.

“Even if it appears counter-intuitive, reactive nitrogen introduced in the environment, mostly as agricultural fertilisers, can reduce total warming. However, this is minor compared with the reduction in greenhouse gas emissions required to keep the planet within safe and just operational boundaries.

“New generation computational tools are helping drive new learnings in climate change science, but understanding is not enough — we must act with great urgency to reduce greenhouse gas emissions.”

Gaining a holistic understanding of the impacts of nitrogen

The scientists determined the overall impact of nitrogen from human sources by first analysing the quantities of the various nitrogen compounds that end up in soil, water and air.

They then fed this data into models that depict the global nitrogen cycle and the effects on the carbon cycle, for example the stimulation of plant growth and ultimately the CO2 and methane content of the atmosphere. From the results of these simulations, they used another atmospheric chemistry model to calculate the effect of man-made nitrogen emissions on radiative forcing, that is the radiant energy that hits one square metre of the Earth’s surface per unit of time.



Source link

Continue Reading

Trending