Connect with us

Solar Energy

Ultra-fast electron measurement provides important findings for the solar industry

Published

on

Ultra-fast electron measurement provides important findings for the solar industry

The key are the ultra-fast flashes of light, with which the team led by Dr. Friedrich Roth works at FLASH in Hamburg, the world’s first free-electron laser in the X-ray region. “We took advantage of the special properties of this X-ray source and expanded them with time-resolved X-ray photoemission spectroscopy (TR-XPS). This method is based on the external photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize in Physics in 1921.

“”For the first time, we were able to directly analyze the specific charge separation and subsequent processes when light hits a model system such as an organic solar cell. We were also able to determine the efficiency of the charge separation in real-time,” explains Dr. Roth from the Institute of Experimental Physics at TU Bergakademie Freiberg.

With photon science to better solar cells

In contrast to previous methods, the researchers were able to identify a previously unobserved channel for charge separation. “With our measurement method, we can carry out a time-resolved, atom-specific analysis. This gives us a fingerprint that can be assigned to the associated molecule. We can see when the electrons energized by the optical laser arrive at the acceptor molecule, how long they stay and when or how they disappear again,” says Prof. Serguei Molodtsov, explaining the measurement method.

He heads the research group “Structural Research with X-ray Free Electron Lasers (XFELs) and Synchrotron Radiation” at the Freiberg Institute of Experimental Physics and is a Scientific Director at the European X-ray Free Electron Laser (EuXFEL).

Analyze weak points and increase quantum efficiency

Real-time analysis and the measurement of internal parameters are important aspects of basic research that the solar industry, in particular, can benefit from. “With our measurements, we draw important conclusions about the interfaces at which free charge carriers are formed or lost and thus weaken the performance of solar cells,” adds Dr. Roth.

With the findings of the Freiberg researchers, for example, optimization possibilities at the molecular level or in the field of materials science can be derived and quantum efficiency optimize newly emerging photovoltaic and photocatalytic systems. The quantum efficiency describes the ratio of the incident light to the photon stream (current that is generated). The team published the results in a current specialist publication, the journal Nature Communications.

Source link

Continue Reading
1 Comment

1 Comment

  1. Pingback: Solar development: super bloom or super bust for desert species? |

Leave a Reply

Solar Energy

Argonne to lead National Energy Storage Research Hub

Published

on

By

Argonne to lead National Energy Storage Research Hub


Argonne to lead National Energy Storage Research Hub

by Clarence Oxford

Los Angeles CA (SPX) Sep 05, 2024






The U.S. Department of Energy (DOE) has selected Argonne National Laboratory to lead the newly established Energy Storage Research Alliance (ESRA), a national hub focused on advancing energy storage technologies. The ESRA, co-led by DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Pacific Northwest National Laboratory (PNNL), is one of two new Energy Innovation Hubs announced by the DOE.

Bringing together nearly 50 leading researchers from three national laboratories and 12 universities, ESRA aims to address the most critical challenges in battery technology, such as safety, high-energy density, and the development of long-duration storage solutions using cost-effective and abundant materials. The initiative is designed to push the boundaries of energy storage science, fostering innovation and strengthening the competitive edge of the U.S. in this crucial field.



“The demand for high-performance, low-cost and sustainable energy storage devices is on the rise, especially those with potential to deeply decarbonize heavy-duty transportation and the electric grid,” stated Shirley Meng, ESRA director and chief scientist at the Argonne Collaborative Center for Energy Storage Science. “To achieve this, energy storage technology must reach levels of unprecedented performance, surpassing the capabilities of current lithium-ion technology. The key to making these transformative leaps lies in a robust research and development initiative firmly grounded in basic science.”



Leveraging decades of investment in fundamental science, ESRA will focus on transformative discoveries in materials chemistry, a deeper understanding of electrochemical processes at the atomic level, and establishing the scientific foundations necessary for major advancements in energy storage technology.



“ESRA creates an energy storage research ecosystem with the mission to rapidly innovate, shorten the time between basic discovery and technology development, and train the next-generation workforce,” commented Bryan McCloskey, ESRA deputy director for scientific thrusts and a faculty engineer at Berkeley Lab.



The success of ESRA’s efforts will lead to the development of high-energy batteries that are fire-resistant, capable of providing long-duration storage for multiple days, have a lifespan of several decades, and are constructed from low-cost, widely available materials.



“ESRA will pave the way for innovative energy storage solutions that drive both U.S. prosperity and security,” said Argonne Director Paul Kearns. “As the lead laboratory for ESRA under the Department of Energy’s Office of Science, Argonne takes pride in spearheading this collaborative effort that unites world-leading experts and taps the impressive scientific resources available in national labs and academia.”



The DOE has committed up to $62.5 million in funding for ESRA over the next five years.



In addition to its research goals, the Argonne-led hub will prioritize training a diverse, next-generation battery workforce to meet future manufacturing demands. This will be achieved through innovative training programs that involve industry, academia, and government partnerships.



“Cultivating a diverse workforce dedicated to safeguarding America’s energy resilience is key to ESRA’s mission,” noted Wei Wang, ESRA deputy director for crosscuts and director of the Energy Storage Materials Initiative at PNNL. “Through our strategic equity and inclusion initiatives, we plan to create a robust training ground for energy storage science from the undergraduate to postdoctoral levels.”



With Berkeley Lab and PNNL as co-leads, the ESRA collaboration brings together comprehensive expertise across the energy storage spectrum. Their state-of-the-art capabilities in technology discovery, modeling and simulation, and materials synthesis and characterization complement those of Argonne, setting the stage for significant advancements in energy storage.



Argonne is joined by 14 partners in this initiative, all of whom are deeply involved in ESRA’s scientific endeavors, governance, strategic development, and the training of the next generation of battery scientists and engineers. This collaboration among national laboratories and universities is vital for discovering new materials, accelerating the development of technology, and commercializing new energy storage innovations.


Related Links

Argonne Collaborative Center for Energy Storage Science

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

UN’s Guterres says China-Africa ties can drive ‘renewable energy revolution’

Published

on

By

UN’s Guterres says China-Africa ties can drive ‘renewable energy revolution’


UN’s Guterres says China-Africa ties can drive ‘renewable energy revolution’

by AFP Staff Writers

Beijing (AFP) Sept 5, 2024






United Nations Secretary-General Antonio Guterres told African leaders Thursday that expanding ties between China and the continent could “drive the renewable energy revolution”.

Guterres and more than 50 African leaders are attending this week’s China-Africa forum, according to state media.

Guterres told the gathering that “China’s remarkable record of development — including on eradicating poverty — provides a wealth of experience and expertise”.

“It can be a catalyst for key transitions on food systems and digital connectivity,” he said.

“And as home to some of the world’s most dynamic economies, Africa can maximise the potential of China’s support in areas from trade to data management, finance and technology,” Guterres added.

Guterres also told the leaders it was time to correct “historic injustices” against the continent.

“It is outrageous… that the continent of Africa has no permanent seat on the Security Council,” he said.

Related Links

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Major Qatari plant to double solar capacity by 2030: minister

Published

on

By

Major Qatari plant to double solar capacity by 2030: minister


Major Qatari plant to double solar capacity by 2030: minister

by AFP Staff Writers

Doha (AFP) Sept 1, 2024






A large new solar plant planned in Qatar will double the Gulf emirate’s previously projected renewable energy capacity by 2030, Qatari Energy Minister Saad al-Kaabi announced on Sunday.

The photovoltaic farm, which will be built in the Dukhan area some 80 kilometres (50 miles) west of the capital Doha, will increase the gas-rich state’s solar production capacity to four gigawatts by the end of the decade, Kaabi said.

The plant “that will be established in Dukhan area will produce 2,000 megawatts, which is twice more than the capacity of Qatar’s production of solar energy of the current projects,” the minister, who is also chief executive of state-owned QatarEnergy, said.

In October 2022, Qatar inaugurated its first large-scale solar farm at al-Kharsaah, west of Doha. The emirate announced in August of the same year another solar project with two plants at Ras Laffan in the north.

Through the combined projects, including at Dukhan, Qatar would achieve “4,000 megawatts of clean energy by 2030”, Kaabi said.

This will “constitute 30 percent of the total production of energy of the state of Qatar” with a yearly reduction of “4.7 million tonnes of CO2 emissions,” he added.

Kaabi said the existing projects should produce 1.7 gigawatts of energy “in first quarter of next year, or early next year”.

The energy minister also announced plans to more than double Qatar’s urea production making the country the largest producer of the fertiliser in the world by the end of the decade.

He said Qatar would “maximise the production of chemical fertilisers” through “a complex with global standards” which would “increase our production capacity from 6 million tonnes annually to more than 12.4 million tonnes annually”.

Qatar is one of the world’s top liquefied natural gas producers alongside the United States, Australia and Russia. Natural gas is a major ingredient in urea manufacturing.

In February, Qatar announced plans to expand its output from its North Field project, saying it will boost capacity to 142 million tonnes per year before 2030.

Over the past year, Qatar has inked a series of long-term LNG deals with France’s Total, Britain’s Shell, India’s Petronet, China’s Sinopec and Italy’s Eni among others.

csp/dcp

QatarEnergy

Related Links

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending