Connect with us

Solar Energy

Shining a light on the true value of solar power

Published

on

Shining a light on the true value of solar power

Beyond the environmental benefits and lower electric bills, it turns out installing solar panels on your house actually benefits your whole community. Value estimations for grid-tied photovoltaic systems prove solar panels are beneficial for utility companies and consumers alike.

For years some utility companies have worried that solar panels drive up electric costs for people without panels. Joshua Pearce, Richard Witte Endowed Professor of Materials Science and Engineering and professor of electrical and computer engineering at Michigan Technological University, has shown the opposite is true – grid-tied solar photovoltaic (PV) owners are actually subsidizing their non-PV neighbors.

Most PV systems are grid-tied and convert sunlight directly into electricity that is either used on-site or fed back into the grid. At night or on cloudy days, PV-owning customers use grid-sourced electricity so no batteries are needed.

“Anyone who puts up solar is being a great citizen for their neighbors and for their local utility,” Pearce said, noting that when someone puts up grid-tied solar panels, they are essentially investing in the grid itself.

“Customers with solar distributed generation are making it so utility companies don’t have to make as many infrastructure investments, while at the same time solar shaves down peak demands when electricity is the most expensive.”

Pearce and Koami Soulemane Hayibo, graduate student in the Michigan Tech Open Sustainability Technology (MOST) Lab, found that grid-tied PV-owning utility customers are undercompensated in most of the U.S., as the “value of solar” eclipses both the net metering and two-tiered rates that utilities pay for solar electricity. Their results are published online now and will be printed in the March issue of Renewable and Sustainable Energy Reviews.

The value of solar is becoming the preferred method for evaluating the economics of grid-tied PV systems. Yet value of solar calculations are challenging and there is widespread disagreement in the literature on the methods and data needed.

To overcome these limitations, Pearce and Hayibo’s paper reviews past studies to develop a generalized model that considers realistic costs and liabilities utility companies can avoid when individual people install grid-tied solar panels. Each component of the value has a sensitivity analysis run on the core variables and these sensitivities are applied for the total value of solar.

The overall value of solar equation has numerous components:

+ Avoided operation and maintenance costs (fixed and variable)

+ Avoided fuel.

+ Avoided generations capacity.

+ Avoided reserve capacity (plants on standby that turn on if you have, for example, a large air conditioning load on hot day).

+ Avoided transmission capacity (lines).

+ Environmental and health liability costs associated with forms of electric generation that are polluting.

Pearce said one of the paper’s goals was to provide the equations to determine the value of solar so individual utility companies can plug in their proprietary data to quickly make a complete valuation.

“It can be concluded that substantial future regulatory reform is needed to ensure that grid-tied solar PV owners are not unjustly subsidizing U.S. electric utilities,” Pearce explains. “This study provides greater clarity to decision makers so they see solar PV is truly an economic benefit in the best interest of all utility customers.”

Solar PV technology is now a profitable method to decarbonize the grid, but if catastrophic climate change is to be avoided, emissions from transportation and heating must also decarbonize, Pearce argues.

One approach to renewable heating is leveraging improvements in PV with heat pumps (HPs), and it turns out investing in PV+HP tech has a better rate of return than CDs or savings accounts.

To determine the potential for PV+HP systems in Michigan’s Upper Peninsula, Pearce performed numerical simulations and economic analysis using the same loads and climate, but with local electricity and natural gas rates for Sault Ste. Marie, in both Canada and U.S. North American residents can profitably install residential PV+HP systems, earning up to 1.9% return in the U.S. and 2.7% in Canada, to provide for all of their electric and heating needs.

“”Our results suggest northern homeowners have a clear and simple method to reduce their greenhouse gas emissions by making an investment that offers a higher internal rate of return than savings accounts, CDs and global investment certificates in both the U.S.and Canada,” Pearce said. “Residential PV and solar-powered heat pumps can be considered 25-year investments in financial security and environmental sustainability.”

Source link

Continue Reading
Click to comment

Leave a Reply

Solar Energy

Argentina starts removing solar panels from Chilean border

Published

on

By

Shining a light on the true value of solar power


Argentina starts removing solar panels from Chilean border

by AFP Staff Writers

Santiago (AFP) June 17, 2024






Argentina on Monday began removing solar panels that were installed by accident on the wrong side of its shared border with Chile, after a complaint from Chilean President Gabriel Boric.

In late April, the Argentine Navy inaugurated a maritime surveillance post on the border with Chile, in the Patagonia region of South America.

But the solar panels, which provide energy to that military unit, were set up on the Chilean side of the frontier.

In a statement, the Argentine Navy acknowledged the mistake and said it had “transferred personnel and means to begin the removal of a solar panel installed in the territory of the sister republic of Chile, north of the Island of Tierra del Fuego.”

Earlier in the day, Boric demanded that the panels be removed or Chile itself would do it.

“Borders are not something that can be ambiguous. It is a basic principle of respect between countries and therefore they must remove those solar panels as soon as possible or we are going to do it,” Boric told reporters during a visit to Paris.

Chile and Argentina share a border of about 5,000 kilometers (more than 3,000 miles).

Related Links

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Chinese Premier Li targets clean energy in Australia visit

Published

on

By

Chinese Premier Li targets clean energy in Australia visit


Chinese Premier Li targets clean energy in Australia visit

by AFP Staff Writers

Sydney (AFP) June 18, 2024






Premier Li Qiang toured a Chinese-controlled lithium refiner in Perth on Tuesday, a sign of his country’s vast appetite for Australian “critical minerals” required for clean energy technologies.

Li ended his four-day visit to Australia with a tour of the low-carbon energy industry in resource-rich Western Australia.

His first stop was Tianqi Lithium Energy Australia, a 51-percent Chinese-owned venture comprising a mine for hard rock lithium ore, and a lithium refinery.

Along with at least a dozen other officials, China’s second most powerful man donned a white helmet during a rainy visit to the facility south of Perth.

The Chinese premier will also view a private research facility for clean energy-produced “green hydrogen” — touted as a fuel of the future to power heavy-duty items such as trucks and blast furnaces.

Australia extracts 52 percent of the world’s lithium, the vast majority of it exported as an ore to China for eventual refining and use in batteries, notably in China’s world-dominant electric vehicle industry.

But despite being a huge Australian customer, China’s involvement in the country’s critical mineral industry is sensitive because of its dominance of global supply chains.

Australia has only recently begun refining lithium rather than exporting the ore.

And the government has announced a strategic plan to develop new supply chains with friendly countries for critical minerals such as lithium, nickel and so-called rare earths.

Earlier this year, the government ordered five China-linked shareholders to sell off a combined 10 percent stake in Northern Minerals, a producer of the rare earth dysprosium.

Such foreign ownership was against Australia’s “national interests”, Treasurer Jim Chalmers said.

About 99 percent of the world’s dysprosium — used in high-performance magnets — is currently produced in China.

China has invested in critical minerals in Latin America, Africa and Australia over the past 10-20 years, said Marina Zhang, associate professor at the University of Technology Sydney’s Australia-China Relations Institute.

Developing supply chains independent of China is “fine and dandy” but unlikely to be achieved even in the short to medium term, she said.

“We are facing a very time-pressing issue that is fighting against climate change — so that issue should be at the centre of the discourse,” Zhang said.

“But unfortunately the Western allies are taking the approach that China’s dominance across the supply chains of critical minerals is imposing national security threats,” she said.

China’s narrative, however, was that it was investing and making a contribution to sustainability and environmental protection, the analyst said.

Related Links

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Rice Lab Reports Significant Advances in Perovskite Solar Cell Stability

Published

on

By

Rice Lab Reports Significant Advances in Perovskite Solar Cell Stability


Rice Lab Reports Significant Advances in Perovskite Solar Cell Stability

by Clarence Oxford

Los Angeles CA (SPX) Jun 18, 2024






Solar power is growing rapidly as an energy technology, recognized for its cost-effectiveness and its role in reducing greenhouse gas emissions.

A Rice University study published in Science details a method for synthesizing formamidinium lead iodide (FAPbI3) into stable, high-quality photovoltaic films. The efficiency of these FAPbI3 solar cells declined by less than 3% over more than 1,000 hours of operation at 85 degrees Celsius (185 Fahrenheit).



“Right now, we think that this is state of the art in terms of stability,” said Rice engineer Aditya Mohite. “Perovskite solar cells have the potential to revolutionize energy production, but achieving long-duration stability has been a significant challenge.”



This breakthrough represents a major step towards making perovskite photovoltaics commercially viable. The researchers added specially designed two-dimensional (2D) perovskites to the FAPbI3 precursor solution, which served as a template to enhance the stability of the crystal lattice structure.



“Perovskite crystals get broken in two ways: chemically – destroying the molecules that make up the crystal – and structurally – reordering the molecules to form a different crystal,” explained Isaac Metcalf, a Rice graduate student and a lead author on the study. “Of the various crystals that we use in solar cells, the most chemically stable are also the least structurally stable and vice versa. FAPbI3 is on the structurally unstable end of that spectrum.”



The researchers found that while 2D perovskites are more stable, they are less effective at harvesting light. By using 2D perovskites as templates, they improved the stability and efficiency of FAPbI3 films. The addition of well-matched 2D crystals facilitated the formation of high-quality FAPbI3 films, showing less internal disorder and better illumination response.



The study showed that solar cells with 2D templates retained their efficiency and durability significantly better than those without. Encapsulation layers further enhanced the stability of these solar cells, extending their operational life to timescales relevant for commercial applications.



“Perovskites are soluble in solution, so you can take an ink of a perovskite precursor and spread it across a piece of glass, then heat it up and you have the absorber layer for a solar cell,” Metcalf said. “Since you don’t need very high temperatures – perovskite films can be processed at temperatures below 150 Celsius (302 Fahrenheit) – in theory that also means perovskite solar panels can be made on plastic or even flexible substrates, which could further reduce costs.”



Silicon, the most commonly used semiconductor in photovoltaic cells, requires more resource-intensive manufacturing processes than perovskites, which have seen efficiency improvements from 3.9% in 2009 to over 26% currently.



“It should be much cheaper and less energy-intensive to make high-quality perovskite solar panels compared to high-quality silicon panels, because the processing is so much easier,” Metcalf said.



“We need to urgently transition our global energy system to an emissions-free alternative,” he added, referring to UN estimates that highlight the importance of solar energy in replacing fossil fuels.



Mohite emphasized that advancements in solar energy technologies are crucial for meeting the 2030 greenhouse gas emissions target and preventing a 1.5 degrees Celsius rise in global temperatures, essential for achieving net zero carbon emissions by 2050.



“If solar electricity doesn’t happen, none of the other processes that rely on green electrons from the grid, such as thermochemical or electrochemical processes for chemical manufacturing, will happen,” Mohite said. “Photovoltaics are absolutely critical.”



Mohite holds the title of William M. Rice Trustee Professor at Rice, is a professor of chemical and biomolecular engineering, and directs the Rice Engineering Initiative for Energy Transition and Sustainability. The study’s lead authors also include Siraj Sidhik, a Rice doctoral alumnus.



“I would like to give a lot of credit to Siraj, who started this project based on a theoretical idea by Professor Jacky Even at the University of Rennes,” Mohite said. “I would also like to thank our collaborators at the national labs and at several universities in the U.S. and abroad whose help was instrumental to this work.”



Research Report:Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells


Related Links

Rice University

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending

Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.