Connect with us

Solar Energy

Finding key to low-cost, fast production of solid-state batteries for EVs

Published

on

Finding key to low-cost, fast production of solid-state batteries for EVs

A new fabrication technique could allow solid-state automotive lithium-ion batteries to adopt nonflammable ceramic electrolytes using the same production processes as in batteries made with conventional liquid electrolytes.

The melt-infiltration technology developed by materials science researchers at the Georgia Institute of Technology uses electrolyte materials that can be infiltrated into porous yet densely packed, thermally stable electrodes.

The one-step process produces high-density composites based on pressure-less, capillary-driven infiltration of a molten solid electrolyte into porous bodies, including multilayered electrode-separator stacks.

“”While the melting point of traditional solid state electrolytes can range from 700 degrees Celsius to over 1,000 degrees Celsius, we operate at a much lower temperature range, depending on the electrolyte composition, roughly from 200 to 300 degrees Celsius,” explained Gleb Yushin, a professor in the School of Materials Science and Engineering at Georgia Tech. “At these lower temperatures, fabrication is much faster and easier. Materials at low temperatures don’t react. The standard electrode assemblies, including the polymer binder or glue, can be stable in these conditions.”

The new technique, to be reported March 8 in the journal Nature Materials, could allow large automotive Li-ion batteries to be made safer with 100% solid-state nonflammable ceramic rather than liquid electrolytes using the same manufacturing processes of conventional liquid electrolyte battery production.

The patent-pending manufacturing technology mimics low-cost fabrication of commercial Li-ion cells with liquid electrolytes, but instead uses solid state electrolytes with low melting points that are melted and infiltrated into dense electrodes. As a result, high-quality multi-layered cells of any size or shape could be rapidly manufactured at scale using proven tools and processes developed and optimized over the last 30 years for Li-ion.

“Melt-infiltration technology is the key advance. The cycle life and stability of Li-ion batteries depend strongly on the operating conditions, particularly temperature,” Georgia Tech graduate student Yiran Xiao explained.

“If batteries are overheated for a prolonged period, they commonly begin to degrade prematurely, and overheated batteries may catch on fire. That has prompted nearly all electric vehicles (EV) to include sophisticated and rather expensive cooling systems.” In contrast, solid-state batteries may only require heaters, which are significantly less expensive than cooling systems.

Yushin and Xiao are encouraged by the potential of this manufacturing process to enable battery makers to produce lighter, safer, and more energy-dense batteries.

“”The developed melt-infiltration technology is compatible with a broad range of material chemistries, including so-called conversion-type electrodes. Such materials have been demonstrated to increase automotive cell energy density by over 20% now and by more than 100% in the future,” said co-author and Georgia Tech research scientist Kostiantyn Turcheniuk, noting that higher density cells support longer driving ranges. The cells need high-capacity electrodes for that performance leap.

Georgia Tech’s technique is not yet commercially ready, but Yushin predicts that if a significant portion of the future EV market embraces solid-state batteries, “This would probably be the only way to go,” since it will allow manufacturers to use their existing production facilities and infrastructure.

“That’s why we focused on this project – it was one of the most commercially viable areas of innovation for our lab to pursue,” he said.

Battery cell prices hit $100 per kilowatt hour for the first time in 2020. According to Yushin, they will need to drop below $70 per kilowatt hour before the consumer EV market can fully open. Battery innovation is critical to that occurring.

The Materials Science lab team currently is focused on developing other electrolytes that will have lower melting points and higher conductivities using the same technique proven in the lab.

Yushin envisions this research team’s manufacturing advance opening the floodgates to more innovation in this area.

“So many incredibly smart scientists are focused on solving very challenging scientific problems, while completely ignoring economic and technical practicality. They are studying and optimizing very high-temperature electrolytes that are not only dramatically more expensive to use in cells but are also up to five times heavier compared with liquid electrolytes,” he explained. “My goal is to push the research community to look outside that chemical box.”

Source link

Continue Reading
1 Comment

1 Comment

  1. Pingback: Verizon Recalls 2.5 Million Mobile Hotspots Due to Reports of Overheating

Leave a Reply

Solar Energy

DGIST enhances quantum dot solar cell performance

Published

on

By

DGIST enhances quantum dot solar cell performance


DGIST enhances quantum dot solar cell performance

by Riko Seibo

Tokyo, Japan (SPX) Oct 04, 2024







A research team led by Professor Jongmin Choi from the Department of Energy Science and Engineering at DGIST, in collaboration with Gyeongsang National University’s Professor Tae Kyung Lee and Kookmin University’s Professor Younghoon Kim, has developed a new method that significantly boosts the performance and longevity of perovskite quantum dot solar cells. Their innovative approach addresses a key issue: surface distortions on quantum dots that hinder solar cell efficiency.

Perovskite quantum dots are widely regarded as essential for next-generation solar cells due to their high light-to-electricity conversion efficiency and scalability. However, the process of replacing the “ligands” on their surface often causes distortions, akin to crumpled paper, that degrade solar cell performance.



The research team tackled this problem by introducing short ligands that firmly grip both sides of the quantum dots. This method effectively restores the quantum dot’s distorted surface, resembling the process of flattening crumpled paper. By smoothing the surface, they significantly reduced defects and improved both the performance and the stability of the solar cells. The power conversion efficiency rose from 13.6% to 15.3%, and the cells maintained 83% of their performance over 15 days, marking a major advancement in solar cell technology.



“Through this research, we could minimize surface defects on the quantum dots and stabilize their surfaces by newly adopting these amphiphilic ligands, thereby significantly improving the efficiency and stability of the solar cells,” explained Professor Jongmin Choi. He also noted the team’s intention to extend this approach to other photoelectric devices in the future.



This study, a collaborative effort by DGIST, Gyeongsang National University, and Kookmin University, was supported by the National Research Council of Science and Technology, the DGIST R and D Program, and the New Faculty Research Foundation at Gyeongsang National University. The findings were published in the ‘Chemical Engineering Journal’ on September 15, 2024.



Research Report:Multifaceted anchoring ligands for uniform orientation and enhanced cubic-phase stability of perovskite quantum dots


Related Links

DGIST

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Philippines’ Marcos opens first EV battery plant

Published

on

By

Philippines’ Marcos opens first EV battery plant


Philippines’ Marcos opens first EV battery plant

by AFP Staff Writers

Manila (AFP) Sept 30, 2024






President Ferdinand Marcos inaugurated on Monday the first factory for electric vehicle batteries in the Philippines, calling it the “future” of clean energy.

The Australian-owned lithium-iron-phosphate factory aims to produce two gigawatt-hours of batteries per year by 2030, powering about 18,000 electric vehicles or nearly half a million home battery systems.

“We have worked very hard and tried to do our best to bring this kind of technology to the Philippines with a clear recognition that this is the future,” Marcos said in a livestreamed speech.

“As the first manufacturing plant in the Philippines for advanced iron phosphate batteries… (it) sets the stage for the Philippines to become a player in clean energy storage in our part of the world.”

Located in New Clark city north of Manila, the StB Giga Factory Inc. facility will create 2,500 local jobs and channel five billion pesos ($89.2 million) into the economy each year, Marcos said.

The investment aligns with the government’s efforts to “transition our country to renewable energy”, and would help Manila “entice more investors in renewable energy facilities in the country”, he added.

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Solar Energy

Fire breaks out at Chinese battery giant CATL plant

Published

on

By

Fire breaks out at Chinese battery giant CATL plant


Fire breaks out at Chinese battery giant CATL plant

by AFP Staff Writers

Beijing (AFP) Sept 29, 2024






A fire broke out Sunday at a factory belonging to Chinese battery giant CATL, which supplies electric vehicle makers including Tesla, but only a “relatively small” impact on operations is expected, the company said.

A CATL spokesperson said no injuries or casualties had occurred at the plant in the coastal city of Ningde, and that “the reasons behind this accident are still under investigation”.

Emergency services were sent to the plant to fight the fire and to organise the evacuation of any people who were inside the 15,000 square metre (160,000 square feet) site, a statement by the Dongqiao Economic and Technological Development Zone said.

Firefighters were alerted to the blaze just before 11:30 AM local time (0330 GMT).

It was not immediately clear what was produced at the plant, CATL’s base in the eastern province of Fujian, but the company said the effect of the now extinguished fire would not be significant.

“The impact to CATL’s overall production operation is relatively small,” the spokesperson said.

Videos published by the Chinese business media outlet Cailianshe, and posted on the Weibo social network, showed parts of a large white building in flames with thick gray smoke rising into the air.

AFP could not immediately verify the authenticity of the images.

CATL was founded in 2011 and produces more than a third of the electric vehicle batteries sold worldwide for automakers that include Mercedes-Benz, BMW, Volkswagen, Toyota, Honda and Hyundai.

ehl-reb/des

Tesla

Weibo

Mercedes-Benz Group

BAYERISCHE MOTOREN WERKE AG

Volkswagen

TOYOTA MOTOR

HONDA MOTOR

Hyundai Motor Company

Related Links

Powering The World in the 21st Century at Energy-Daily.com





Source link

Continue Reading

Trending