Connect with us

Solar Energy

New research helps solar technology become more affordable

Published

on

New research helps solar technology become more affordable

Scientists at The University of Manchester have found a way to accelerate the uptake of solar technology, by increasing the environmental safety of perovskite solar cells.

Perovskite solar cells have attracted interest because, unlike silicon solar cells, they can be mass produced through roll-to-roll processing. Additionally, they are light and colourful, with the versatility to be used in non-traditional settings such as windows and contoured roofs.

However, up until now, application has been impacted by potential environmental risks. Perovskite solar cells contain lead, a cumulative toxin, and if the cells get damaged, lead ions may leak.

Taking lessons from nature, Professor Brian Saunders and Dr David Lewis have devised a way to eliminate the lead release from broken cells. Using a bioinspired mineral called hydroxyapatite, a major constituent of human bone, they have created a ‘failsafe’ which captures the lead ions in an inorganic matrix. As a result, if cells are damaged, toxins are stored in an inert mineral, rather than released in the environment.

In a dual success, The Engineering and Physical Sciences Research Council (EPSRC)-funded project found that through the addition of hydroxyapatite, the efficiency of perovskite solar cell increased to around 21%. This compares to around 18% efficiency for control cells with no added hydroxyapatite. An increased efficiency in panels means more energy can be generated and at a lower cost.

The research team hope that the cells will bring forward the large-scale application of perovskite solar cell technology. Professor Brian Saunders, Professor of Polymer and Colloid Chemistry at the School of Materials, The University of Manchester, said: “Up until now, the substantial lead component in perovskite solar cells has been a potential environmental concern. If the solar cells are damaged, for example by hail, the ions may leak.

“By creating an in-device fail-safe system, we have devised a way to contain toxic ions in damaged perovskite cells. Through increasing the inherent safety of perovskite solar cells, we hope our research will provide a helping hand to the wider deployment of solar technology as we strive to achieve net zero CO2 emissions.””

Dr David Lewis, Deputy Head of Department and Reader in Materials Chemistry, added, “We embarked on this research as we were committed to eliminating an environmental risk. That commitment has resulted in increasing both the sustainability and the efficiency of perovskite solar cells. We hope these dual outcomes will increase the viability for homes and businesses, worldwide, to host and use solar technology.”

The research was reported in: ‘Bioinspired scaffolds that sequester lead ions in physically damaged high efficiency perovskite solar cells’ in Chemical Communications.

Source link

Continue Reading
1 Comment

1 Comment

  1. Pingback: The perfect recipe for efficient perovskite solar cells | godsownmedia

Leave a Reply

Solar Energy

Scale-up fabrication of perovskite quantum dots

Published

on

By

Scale-up fabrication of perovskite quantum dots


Scale-up fabrication of perovskite quantum dots

by Simon Mansfield

Sydney, Australia (SPX) Jan 24, 2025






Quantum dots, tiny semiconductor nanomaterials known for their color-tunable and highly efficient photoluminescence, have revolutionized display technologies such as liquid crystal displays (LCDs), organic light-emitting diodes (OLEDs), and micro light-emitting diodes (Micro-LEDs). In 2023, the Nobel Prize in Chemistry recognized the discovery and development of quantum dots, underscoring their significance in modern technology.

Perovskite quantum dots (PQDs) are a promising class of materials distinguished by their high absorption coefficient, cost-effectiveness, ease of processing, and reduced environmental impact. Their potential for display applications has attracted considerable interest. In 2015, Professor Zhong and his team introduced a groundbreaking method for in-situ fabrication of PQDs within a polymeric matrix. The subsequent establishment of Zhijing Technology (Beijing) Co., Ltd. in 2016 aimed to advance the scale-up production and application of PQDs in display technologies.



After extensive efforts, the company has developed several in-situ fabrication techniques to enable large-scale manufacturing. These methods include in-situ blade coating, spray drying, extrusion, inkjet printing, and lithography. Recently, the team resolved PQD stability challenges, leading to the integration of PQDs in Skyworth’s TV products. Unlike conventional quantum-dot light-emitting diode (QLED) TVs that utilize 630 nm emissive materials, these innovations introduced deep-red emissive PQDs at 650 nm, enhancing eye care capabilities.



In January 2025, the journal Engineering published a research article titled “Spray-Drying Fabrication of Perovskite Quantum-Dot-Embedded Polymer Microspheres for Display Applications.” This study highlighted the successful scale-up fabrication of PQDs, achieving a production capacity of 2000 kilograms annually. The research also demonstrated the use of PQDs in LCD backlight applications, where PQD-based optical films exhibited exceptional stability under challenging conditions. Aging tests showed brightness decay within 10% after 1000 hours at 60 C with 90% relative humidity and under 70 C conditions with 150 W/m2 455 nm blue light irradiation.



Furthermore, researchers showcased PQD-embedded polymer microspheres as efficient color converters in full-color Micro-LED displays with pixel sizes as small as 10 um. The spray-drying fabrication method provides a cost-effective solution for large-scale PQD production. These PQD-embedded polymer microspheres demonstrated remarkable long-term operational stability, making them highly competitive for use in advanced display technologies.



Research Report:Spray-Drying Fabrication of Perovskite Quantum-Dot-Embedded Polymer Microspheres for Display Applications


Related Links

Beijing Institute of Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Finding better photovoltaic materials faster with AI

Published

on

By

Finding better photovoltaic materials faster with AI


Finding better photovoltaic materials faster with AI

by Robert Schreiber

Berlin, Germany (SPX) Jan 24, 2025






Researchers at the Karlsruhe Institute of Technology (KIT) and the Helmholtz Institute Erlangen-Nurnberg (HI ERN) have developed a novel AI-driven workflow that dramatically accelerates the discovery of high-efficiency materials for perovskite solar cells. By synthesizing and testing just 150 targeted molecules, the team achieved results that would typically require hundreds of thousands of experiments. “The workflow we have developed will open up new ways to quickly and economically discover high-performance materials for a wide range of applications,” said Professor Christoph Brabec of HI ERN. One of the newly identified materials enhanced the efficiency of a reference solar cell by approximately two percentage points, reaching 26.2 percent.

The research began with a database containing the structural formulas of about one million virtual molecules, each potentially synthesizable from commercially available compounds. From this pool, 13,000 molecules were randomly selected. KIT researchers applied advanced quantum mechanical methods to evaluate key properties such as energy levels, polarity, and molecular geometry.

Training AI with Data from 101 Molecules

Out of the 13,000 molecules, the team chose 101 with the most diverse properties for synthesis and testing at HI ERN’s robotic systems. These molecules were used to fabricate identical solar cells, enabling precise comparisons of their efficiency. “The ability to produce comparable samples through our highly automated synthesis platform was crucial to our strategy’s success,” Brabec explained.

The data obtained from these initial experiments were used to train an AI model. This model then identified 48 additional molecules for synthesis, focusing on those predicted to offer high efficiency or exhibit unique, unforeseen properties. “When the machine learning model is uncertain about a prediction, synthesizing and testing the molecule often leads to surprising results,” said Tenure-track Professor Pascal Friederich from KIT’s Institute of Nanotechnology.



The AI-guided workflow enabled the discovery of molecules capable of producing solar cells with above-average efficiencies, surpassing some of the most advanced materials currently in use. “We can’t be sure we’ve found the best molecule among a million, but we are certainly close to the optimum,” Friederich commented.

AI Versus Chemical Intuition

The researchers also gained valuable insights into the AI’s decision-making process. The AI identified chemical groups, such as amines, that are associated with high efficiency but had been overlooked by traditional chemical intuition. This capability underscores the potential of AI to uncover previously unrecognized opportunities in materials science.



The team believes their AI-driven strategy can be adapted for a wide range of applications beyond perovskite solar cells, including the optimization of entire device components. Their findings were achieved in collaboration with scientists from FAU Erlangen-Nurnberg, South Korea’s Ulsan National Institute of Science, and China’s Xiamen University and University of Electronic Science and Technology. The research was published in the journal Science.



Research Report:Inverse design of molecular hole-transporting semiconductors tailored for perovskite solar cells


Related Links

Karlsruhe Institute of Technology

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Solar Energy

Solar power surpasses coal in EU for first time

Published

on

By

Solar power surpasses coal in EU for first time


Solar power surpasses coal in EU for first time

by AFP Staff Writers

Paris (AFP) Jan 23, 2025






Solar overtook coal in the European Union’s electricity production in 2024, with the share of renewables rising to almost half the bloc’s power sector, according to a report released Thursday.

Gas generation, meanwhile, declined for the fifth year in a row and fossil-fuelled power dipped to a “historic low”, climate think tank Ember said in its European Electricity Review 2025.

“The European Green Deal has delivered a deep and rapid transformation of the EU power sector,” the think tank said.

“Solar remained the EU’s fastest-growing power source in 2024, rising above coal for the first time. Wind power remained the EU’s second-largest power source, above gas and below nuclear.”

Overall, strong growth in solar and wind have boosted the share of renewables to 47 percent, up from 34 percent in 2019.

Fossil fuels have fallen from 39 to 29 percent.

“A surge in wind and solar generation is the main reason for declining fossil generation. Without wind and solar capacity added since 2019, the EU would have imported 92 billion cubic metres more of fossil gas and 55 million tonnes more of hard coal, costing EUR59 billion,” the report said.

According to Ember, these trends are widespread across Europe, with solar power progressing in all EU countries.

More than half have now either eliminated coal, the most polluting fossil fuel, or reduced its share to less than five percent of their energy mix.

“Fossil fuels are losing their grip on EU energy,” said Chris Rosslowe, lead author of the report.

“At the start of the European Green Deal in 2019, few thought the EU’s energy transition would be where it is today: wind and solar are relegating coal to the margins and pushing gas into decline.”

– Battery storage –

But Rosslowe cautioned much work remains.

“We need to accelerate our efforts, particularly in the wind power sector,” he said.

Europe’s electricity system will also need to increase its storage capacity to make the most of renewable energies, which are by definition intermittent, he added.

In 2024, plentiful solar energy helped drive down prices in the middle of the day, sometimes even resulting in “negative or zero price hours” due to an overabundance of supply compared to demand.

“A readily available solution is a battery co-located with a solar plant. This gives solar power producers more control over the prices they receive and helps them avoid selling for low prices in the middle of the day,” the report said.

The think tank suggested consumers could reduce their bills by shifting usage to periods of abundance (smart electrification), while battery operators could earn revenue from buying power when prices are low and selling it back when demand peaks.

Batteries have advanced significantly in recent years, with installed capacity across the EU doubling to 16 GW in 2023, compared with 8 GW in 2022, according to Ember.

But this capacity is concentrated in just a small number of countries: 70 percent of existing batteries were located in Germany and Italy at the end of 2023.

“More storage and demand flexibility is needed to sustain growth and for consumers to reap the full benefits of abundant solar,” Ember said.

“After a challenging few years for the wind power sector, additions are set to grow, but not by enough to hit EU targets. Closing this gap will require continued policy implementation and political support, such that the rate of additions between now and 2030 is more than double that of recent years.”

Related Links

All About Solar Energy at SolarDaily.com





Source link

Continue Reading

Trending